Limited

Registered in England & Wales Company Registration Number

Report: -R0724-21 KINGS LYNN COMPRESSOR STATION – RESOLUTION OF IGE/TD/12 CODE STRESS EXCEPTIONS

Confidential

Restricted to generating, National Grid and

EXTERNAL DISTRIBUTION LIST	COMPANY	

INTERNAL DISTRIBUTION LIST	LOCATION
Project File	-F0488
Library File	Technical Section

01	18/02/22				Accepted
00	16/12/21				Draft for Client Comment
Revision	Date	Author Signature	Verifier Signature	Approver Signature	Status

REVISION STATUS INDEX									
SUMMARY OF CHANGES		REVISIONS							
	NOMBER	1	2	3	4	5	6		

Executive Summary

National Grid owns and operates Kings Lynn Compressor Station in Norfolk. At a part of the site, in the area of the bi-directional pipework, associated with the compressors, there is visible evidence of changes to the ground elevation, suggesting differential settlement.

Additionally, as part of potential site upgrade and remediation works, National Grid propose to demolish three pits onsite and backfill the associated pipework with native ground. Previous studies, **1000**-R0711-21 and **1000**-R0713-21, were undertaken to consider the effects of the proposed modifications to the sustained, shakedown and fatigue criteria of IGE/TD/12. A number of IGE/TD/12 code stress exceptions, due to the proposed modifications, were identified.

In total twenty-eight code stress exceptions were identified on six fitting types. Where multiple code stress exceptions exist for a single fitting type then the greater exception is said to 'bound' the lesser. Thus, it is possible to qualify multiple fittings of the same type and classification with a single assessment. To this end a more detailed analysis of the following fittings is required:

- 900mm x 900mm Tee
- 900mm x 90° Bend
- 900mm x 300mm Sweepolet
- 900mm x 200mm Sweepolet
- 900mm x 50mm Weldolet
- 50mm x 50mm Tee

This involves creating a detailed three-dimensional finite element (FE) model of each fitting type, applying the loads on the FE model, analysing the model using finite element analysis (FEA) and then assessing the stresses from the FEA using appropriate design-by-analysis methods, such as that given in IGE/TD/12 Appendix 6.

The purpose of this report is to describe the modelling, finite element analysis (FEA) and results of the assessments that were undertaken to determine the fitness-forpurpose of each fitting type.

Conclusions

- 1. The 900mm x 900mm tee:
 - i. Satisfies the TD/12 global plastic collapse criterion.
 - ii. Does not satisfy the local plastic collapse criterion.
 - a. A limit load analysis has been performed, for which a limiting load factor of 1.3 was found.
 - iii. Does not satisfy the IGE/TD/12 shakedown assessment criterion.
 - a. An elastic-plastic ratcheting assessment was performed to the requirements of ASME VIII Division 2. The fitting failed to shakedown to an elastic-plastic load cycle and repeat loadings would eventually lead to incremental plastic collapse.
 - b. Shakedown was successfully achieved when considering X65 material grade.
- 2. The 900mm x 90° bend:
 - i. Satisfies the TD/12 limit load analysis criterion.
- 3. The 900mm x 300mm sweepolet:
 - i. Satisfies the TD/12 limit load analysis criterion.
 - ii. Satisfies the ASME VIII Division 2 elastic-plastic ratcheting assessment criterion.
 - iii. Satisfies the TD/12 fatigue assessment criterion.
- 4. The 900mm x 200mm sweepolet:
 - i. Satisfies the TD/12 limit load analysis criterion.
 - ii. Satisfies the ASME VIII Division 2 elastic-plastic ratcheting assessment criterion.
 - iii. Satisfies the TD/12 fatigue assessment criterion.
- 5. The 900mm x 50mm weldolet:
 - i. Satisfies the TD/12 limit load analysis criterion.
- 6. The 50mm x 50mm tee:
 - i. Satisfies the TD/12 limit load analysis criterion.

Recommendations

Conservative assumptions have been made on the 900mm x 900mm tee material grade and geometry. It is recommended that material scrapings and geometrical measurements of the fitting are undertaken to determine the actual material grade of the fitting and actual fitting wall thicknesses. If the material grade is shown to be higher than X56 and the fitting is shown to be thicker, then a revised model and analysis would be recommended before considering replacing the tee.

CONTENTS

1	INTRO	DUCTION	.7							
	1.1	Purpose								
	1.2	Scope	. 8							
2	MODE	LS AND LOADING	. 8							
	2.1	900mm x 900mm Tee	. 8							
	2.2	900mm x 90°mm Bend	. 8							
	2.3	900mm x 300mm Sweepolet	. 8							
	2.4	900mm x 200mm Sweepolet	. 8							
	2.5	900mm x 50mm Weldolet	. 8							
	2.6	50mm x 50mm Tee	. 8							
3	ASSE	SSMENT CRITERIA	. 8							
	3.1	Sustained	. 9							
	3.1.1	General Primary Membrane Stress	. 9							
	3.1.2	Local Primary Membrane Stress	. 9							
	3.1.3	Local Primary Membrane Plus Primary Bending	. 9							
	3.1.4	Limit Load Analysis	. 9							
	3.2	Incremental Plastic Collapse – Elastic Stress Analysis	10							
	3.2.1	Incremental Plastic Collapse – Elastic-Plastic Stress Analysis	10							
	3.3	Fatique	10							
	3.3.1	Sweepolets	10							
4	RESU	LTS	11							
	4.1	900mm x 900mm Tee	11							
	4.2	900mm x 90°mm Bend	11							
	4.3	900mm x 300mm Sweepolet	11							
	4.4	900mm x 200mm Sweepolet	11							
	4.5	900mm x 50mm Weldolet	11							
	4.6	50mm x 50mm Tee	11							
5	CONC	LUSIONS	12							
6	RECO	MMENDATIONS	13							
7	REFE	RENCES	13							
8	TABL	ES	14							
A	PPENDI	A 900MM X 900MM TEE ASSESSMENT	16							
A	6.2.1	GLOBAL PRIMARY MEMBRANE STRESS	17							
A	6.2.2	LOCAL PRIMARY MEMBRANE STRESS PLUS PRIMARY BENDING	18							
A	6.2.3	LIMIT LOAD ANALYSIS	18							
A	6.3.4	SHAKEDOWN - ELASTIC-PLASTIC ASSESSMENT	18							
A	PPENDI	B 900MM X 90° BEND ASSESSMENT	31							
A	PPENDI	C 900MM X 300MM SWEEPOLET ASSESSMENT	38							
C	6.1.5	SUSTAINED	39							
A	PPENDI	D 900MM X 200MM SWEEPOLET ASSESSMENT	62							
D	.6.2.6	LIMIT LOAD ANALYSIS	63							
A	PPENDI	E 900MM X 50MM WELDOLET ASSESSMENT	85							
E	6.2.7	LIMIT LOAD ANALYSIS	86							
A	PPENDI	(F 50MM X 50MM TEE ASSESSMENT	93							
F.	6.2.8	LIMIT LOAD ANALYSIS	94							

1 INTRODUCTION

National Grid owns and operates Kings Lynn Compressor Station in Norfolk. At a part of the site, in the area of the bi directional pipework, associated with the compressors, there is visible evidence of changes to the ground elevation, suggesting differential settlement.

A previous study, **R0706** 21 ^[1], was undertaken to assess the effects of the settlement to the abnormal sustained and shakedown criteria of IGE/TD/12. A small quantity of code stress exceptions were identified during the study.

Additionally, as part of potential site upgrade and remediation works, National Grid propose to demolish three pits onsite and backfill the associated pipework. Previous studies, **1**-R0711-21 ^[2] and **1**-R0713 21 ^[3], were undertaken to consider the effects of the proposed modifications to the sustained, shakedown and fatigue criteria of IGE/TD/12. A number of IGE/TD/12 code stress exceptions, due to the proposed modifications, were identified.

In total twenty-eight code stress exceptions were identified on six fitting types. Where multiple code stress exceptions exist for a single fitting type then the greater exception is said to 'bound' the lesser. Thus, it is possible to qualify multiple fittings of the same type and classification with a single assessment. To this end a more detailed analysis of the following fittings is required:

- 900mm x 900mm Tee
- 900mm x 90° Bend
- 900mm x 300mm Sweepolet
- 900mm x 200mm Sweepolet
- 900mm x 50mm Weldolet
- 50mm x 50mm Tee

This involves creating a detailed 3-dimensional finite element (FE) model of each fitting type, applying the loads on the FE model, analysing the model using finite element analysis (FEA) and then assessing the stresses from the FEA using appropriate design-by-analysis methods, such as that given in IGE/TD/12 Appendix 6.

The purpose of this report is to describe the modelling, finite element analysis (FEA) and results of the assessments that were undertaken to determine the fitness-forpurpose of each fitting type.

1.1 Purpose

The purpose of this report is to describe the modelling, finite element analysis (FEA) and results of the assessments that were undertaken to determine the fitness-forpurpose of each fitting type.

1.2 Scope

This report describes the modelling and fitness-for-purpose assessment of the fittings at Kings Lynn compressor station where code stress exceptions have been identified.

Where relevant, the assessments herein consider the code stress exceptions identified on fittings after removal of the three pits.

2 MODELS AND LOADING

A summary of the fitting types considered herein, including the corresponding pipe stress model, is supplied in Table 1.

Details of the model generation and applied loading for each fitting type are provided in the following sections

2.1 900mm x 900mm Tee

See Appendix A.

2.2 900mm x 90°mm Bend

See Appendix B.

2.3 900mm x 300mm Sweepolet

See Appendix C.

2.4 900mm x 200mm Sweepolet

See Appendix D.

2.5 900mm x 50mm Weldolet

See Appendix E.

2.6 50mm x 50mm Tee

See Appendix F.

3 ASSESSMENT CRITERIA

IGE/TD/12 Appendix 6 gives some guidance on assessing the stress fields generated from finite element analysis. The TD/12 acceptance criteria are used herein.

3.1 Sustained

3.1.1 General Primary Membrane Stress

According to IGE/TD/12^[4], for an AGI in a Type 'R' area the design factor is 0.67, the limit on linearised general primary membrane stress intensity (Tresca), P_m, for normal sustained and abnormal sustained is provided in the table below:

		Limiting Value of S	Stress Intensity <mark>(</mark> S)			
f	Normal S	Sustained	Abnormal Sustained			
	$\frac{SMYS}{UTS} \le 0.74$	$\frac{SMYS}{UTS} > 0.74$	$\frac{SMYS}{UTS} \le 0.74$	$\frac{SMYS}{UTS} > 0.74$		
0.67	0.8 SMYS	0.34(SMYS+UTS)	0.9(SMYS)	0.34(SMYS+UTS)		

Where, SMYS is the Specified Minimum Yield Strength and UTS is the Ultimate Tensile Strength.

3.1.2 Local Primary Membrane Stress

According to IGE/TD/12, the limit on linearised local primary membrane stress intensity (Tresca), PL, is the lower of:

SMYS or
$$1.5\left(\frac{\text{UTS}}{2.35}\right)$$
 (1)

3.1.3 Local Primary Membrane Plus Primary Bending

According to IGE/TD/12, the limit on linearised local primary membrane plus primary bending stress intensity (Tresca), PL+Pb, is also the lower of:

SMYS or
$$1.5\left(\frac{\text{UTS}}{2.35}\right)$$
 (2)

3.1.4 Limit Load Analysis

For instances whereby a fitting does not satisfy any of the above criteria, or suitable stress planes cannot be readily identified for linearisation across a section, a limit load analysis should be performed to the requirements of Section A6.7 of IGE/TD/12. The limit load is defined as the load which causes overall structural instability. This point is indicated by the inability to achieve an equilibrium solution for a small increase in load.

In accordance with IGE/TD/12 the following factors should be applied to the calculated limited load to demonstrate acceptability:

Design Factor	Factor to be Applied to Calcu	Factor to be Applied to Calculated Limit Load for:					
Location	Normal Sustained Stress	Abnormal Sustained Stress					

0.67	0.80	0.90

3.2 Incremental Plastic Collapse – Elastic Stress Analysis

For the expansion loadcase, the TD/12 criterion states that the linearised primary + secondary membrane and bending stress intensity (Tresca) range must not exceed the lower of,

$$2.0 \text{SMYS or } 3.0 \left(\frac{\text{UTS}}{2.35}\right) \tag{3}$$

3.2.1 Incremental Plastic Collapse – Elastic-Plastic Stress Analysis

For instances whereby a fitting does not satisfy the above criterion, or unfavourable results are predicted, it may still be possible to qualify the fitting by undertaking an elastic-plastic (non-linear) analysis.

In lieu of a specific criterion in IGE/TD12, the elastic-perfectly-plastic ratcheting assessment criterion of ASME VIII Div 2^[5] Section 5.5.7.2 has been used.

An assessment is performed by application, removal and re application of the loadings. A component is deemed acceptable if any one of the following conditions is met:

- 1. There is no plastic strain in the component.
- 2. There is an elastic core in the primary-load-bearing boundary of the component.
- 3. There is not a permanent change in the overall dimensions of the component.

3.3 Fatigue

From the pipe stress analyses undertaken in Ref. [1,2 &3] two sweepolets failed the IGE/TD/12 fatigue assessment criterion and, as such, are the only fittings considered herein for more detailed assessment.

3.3.1 Sweepolets

In accordance with Appendix 5 of TD/12 the sweepolet body should be assessed using a Class D fatigue curve, defined as:

$$LOG_{10} N = 12.2 - 3 LOG_{10} S_R$$
 (for $N \le 10^7 \text{ cycles}$) (4)

$$LOG_{10} N = 15.6 - 5 LOG_{10} S_R$$
 (for $N \ge 10^7$ cycles) (5)

The header and branch weld should be assessed using a Class F fatigue curve, defined as:

 $LOG_{10} N = 11.8 - 3 LOG_{10} S_R$ (for $N \le 10^7$ cycles) (6)

$$LOG_{10} N = 15.0 - 5 LOG_{10} S_R$$
 (for $N \ge 10^7$ cycles) (7)

4 RESULTS

4.1 900mm x 900mm Tee

See Appendix A.

4.2 900mm x 90°mm Bend

See Appendix B.

4.3 900mm x 300mm Sweepolet

See Appendix C.

4.4 900mm x 200mm Sweepolet

See Appendix D.

4.5 900mm x 50mm Weldolet

See Appendix E.

4.6 50mm x 50mm Tee

See Appendix F.

5 CONCLUSIONS

- 1. The 900mm x 900mm tee:
 - i. Satisfies the TD/12 global plastic collapse criterion.
 - ii. Does not satisfy the local plastic collapse criterion.
 - a. A limit load analysis has been performed, for which a limiting load factor of 1.3 was found.
 - iii. Does not satisfy the IGE/TD/12 shakedown assessment criterion.
 - a. An elastic-plastic ratcheting assessment was performed to the requirements of ASME VIII Division 2. The fitting failed to shakedown to an elastic-plastic load cycle and repeat loadings would eventually lead to incremental plastic collapse.
 - b. Shakedown was successfully achieved when considering X65 material grade.
- 2. The 900mm x 90° bend:
 - i. Satisfies the TD/12 limit load analysis criterion.
- 3. The 900mm x 300mm sweepolet:
 - i. Satisfies the TD/12 limit load analysis criterion.
 - ii. Satisfies the ASME VIII Division 2 elastic-plastic ratcheting assessment criterion.
 - iii. Satisfies the TD/12 fatigue assessment criterion.
- 4. The 900mm x 200mm sweepolet:
 - i. Satisfies the TD/12 limit load analysis criterion.
 - ii. Satisfies the ASME VIII Division 2 elastic-plastic ratcheting assessment criterion.
 - iii. Satisfies the TD/12 fatigue assessment criterion.
- 5. The 900mm x 50mm weldolet:
 - i. Satisfies the TD/12 limit load analysis criterion.
- 6. The 50mm x 50mm tee:
 - i. Satisfies the TD/12 limit load analysis criterion.

6 RECOMMENDATIONS

Conservative assumptions have been made on the 900mm x 900mm tee material grade and geometry. It is recommended that material scrapings and geometrical measurements of the fitting are undertaken to determine the actual material grade of the fitting and actual fitting wall thicknesses. If the material grade is shown to be higher than X56 and the fitting is shown to be thicker, then a revised model and analysis would be recommended before considering replacing the tee.

7 REFERENCES

- Enderson Provide Affected by Ground Subsidence', 13/09/21.
- R0713-21, 'Kings Lynn Compressor Station Proposed Removal of Three Pits on Feeder 2 – IGE/TD/12 Stress Analysis, 28/10/21.
- IGE/TD/12 Edition 2, Reprint with Amendments, Communication 1757, 2012, Pipework Stress Analysis for Gas Industry Plant, Institution of Gas Engineers & Managers.
- 5. ASME VIII Division 2:2013, 'ASME Boiler & Pressure Vessel Code Alternative Rules for the Construction of Pressure Vessels', 2013.
- 6. MSC/PATRAN 2005 r2a, MacNeal-Schwendler Corporation.
- 7. ABAQUS/Standard Version 6.9.3, Hibbitt, Karlsson & Sorensen Inc., 2009.

8 TABLES

Fitting Type	Assessment Criteria	Reported Code Stress Ratio (%)	Fatigue Usage	Caesar II Model Name	Node Number
900mm x 900mm	Abnormal Sustained	367.09	_	KL_CLAY_SETTLEMENT_FF.C2	6180
Tee	Shakedown	127.13			15220
				·	
900mm x 90° Bend	Abnormal Sustained	154.03	-	KL_CLAY_SETTLEMENT_FF.C2	1550
18					
	Abnormal Sustained	341.18	-	KL_CLAY_SETTLEMENT_FF_01	6070
900mm x 300mm Sweepolet	Sustained	112.54	-	KL_FIRM_CLAY_FF_01_PITS_SOFT_FILL	15090
	Shakedown	165.64	-3	KL_FIRM_CLAY_FF_01_PITS_SOFT_FILL	15090
	Fatigue	atigue -		1971_FIRM_CLAY 1998_RF_FIRM_CLAY 1998_FF_FIRM_CLAY 2003-2021_RF_FIRM_CLAY 2003-2021_FF_FIRM_CLAY 2021-2050_X10_RF_FIRM_CLAY_NO_PITS_SOFT_FILL 2021-2050_X10_FF_FIRM_CLAY_NO_PITS_SOFT_FILL	<mark>6070</mark>
	Abnormal Sustained	255.31	-	KL_CLAY_SETTLEMENT_FF_01	1310
	Sustained	111.84		KL_FIRM_CLAY_FF_01_PITS_SOFT_FILL	15990
900mm x 200mm	Shakedown	164.47		KL_CLAY_SETTLEMENT_RF_01	15990
200mm Sweepolet	Fatigue	-	14.18	1971_FIRM_CLAY 1998_RF_FIRM_CLAY 1998_FF_FIRM_CLAY 2003-2021_RF_FIRM_CLAY 2003-2021_FF_FIRM_CLAY 2021-2050_X10_RF_FIRM_CLAY_NO_PITS_SOFT_FILL 2021-2050_X10_FF_FIRM_CLAY_NO_PITS_SOFT_FILL	15990
~					
900mm x 50mm Weldolet	Abnormal Sustained	105.97	-	KL_CLAY_SETTLEMENT_FF_01	6160

50mm x 50mm Tee	Abnormal Sustained	141.84	-	KL_CLAY_SETTLEMENT_FF_01	16980		
Table 1 – Fitting Type and Loadcases Considered for FEA							

CONFIDENTIAL

APPENDIX A 900MM X 900MM TEE ASSESSMENT

A.1 GEOMETRY

In the absence of specific geometrical data the geometry of the tee is assumed to satisfy the criteria given in IGE/TD/12 and the minimum wall thickness requirements of the 1972 edition of T1. The dimensions used are shown in Table A1 and Figure A1.

A.2 FINITE ELEMENT MODEL

A three-dimensional finite element (FE) model of the tee was constructed using MSC Patran ^[6] and analysed using the general purpose FE code ABAQUS ^[7]. Twenty-noded, three degree of freedom reduced integration brick (hexahedral) elements, C3D20R, were used for the analysis.

Beam elements representing the pipe stress model are tied to the open ends of the 3D solid model using rigid multi-point constraints (MPCs), as shown schematically in Figure A1. The three nodes J(1), J(2) and J(3) are coincident at the intersection but are not connected. The branch node, J(3), is fixed by a translational and rotational boundary condition, whilst forces and moments are applied at the header nodes J(1) and J(2).

The beams allow the application of forces and moments from the pipe stress model onto the solid model of the fitting. Adequate lengths of header and branch pipe are modelled such that the local effects of the MPCs are removed from the area of interest at the fitting.

The FE mesh created for the 900mmx900mm tee is shown in Figure A2.

A.3 MATERIAL PROPERTIES

Young's modulus and Poisson's ratio equal to 210000 N/mm² and 0.3, respectively, were used in all analyses. The material grade of the tee is unknown and has therefore been modelled assuming minimum required mechanical properties as per T1. A material grade of X56 has been assumed which has a SMYS of 386MPa and SMUTS of 489MPa. The matching header and branch piping is API-5I X60 which has a SMYS of 413MPa and a SMUTS of 517MPa.

A.4 LOADS

A.4.1 Internal Pressure

Distributed pressure loads were applied to all internal surfaces.

In order to represent the branch and one of the header sections being 'capped off' downstream of the fitting, pressure end loads were applied to the header pipe elements via the MPCs. The branch pressure end load was taken into consideration by the reaction at the branch boundary condition.

A.4.2 System Forces and Moments

For each of the assessment criteria considered, forces and moments were extracted for the most highly stressed fitting only, details of the IGE/TD/12 assessments considered and associated loadcase from the pipe stress analysis are provided in Table A2.

Before application to the FE model, the extracted forces and moments were converted to the axis convention of the FE model.

The extracted forces and moments are given in Table A3 and Table A4 and the forces and moments applied to the FE model are given in Table A5 and Table A6.

A.5 ANALYSIS

Linear elastic analyses of the finite element model are initially performed to determine the stresses in the fitting. The stresses are then compared to the allowable stress criteria for the various failure modes for the acceptability.

The following failure modes are checked;

- Plastic collapse
 - o Global plastic collapse
 - Local plastic collapse
- Shakedown

Where the linear elastic stress results exceed the allowable stress limits, elastic-plastic (non-linear) stress analysis is performed to determine the acceptability of the fitting.

A.6 RESULTS

A.6.1 Internal Pressure

A contour plot of maximum principal stresses due to an internal pressure loading of 79.5 barg (MIP) is presented in Figure A3. Away from concentrations, maximum principal stress in the adjoining pipe is in the range 200 to 230 MPa. Classical theory predicts a hoop stress of 228.6 MPa in the outside wall for a wall thickness of 15.9 mm. This provides some confidence in the model.

A.6.2 Plastic Collapse (Sustained)

A.6.2.1 Global Primary Membrane Stress

Figure A4 shows the stress intensity (Tresca) stress on the tee for the abnormal sustained (including settlement) loadcase.

Taking SCLs at appropriate locations away from discontinuities and concentrations, from Table A7 it is shown that the general primary membrane stress, P_m, is less than the allowable stress limit prescribed in TD/12.

A.6.2.2 Local Primary Membrane Stress Plus Primary Bending

Taking SCLs at appropriate locations to include discontinuities, but not concentrations, from Table A7, it is shown that the local primary membrane stress plus primary bending stress, $P_L + P_b$, is greater than the allowable stress limit prescribed in TD/12.

A.6.2.3 Limit Load Analysis

The linear elastic stress analysis showed an unacceptable stress margin for the local plastic collapse criteria. A limit load analysis has therefore been performed in accordance with Section A6.7 of TD/12.

Table A8 summarises the results of the assessment, a limiting load factor of 1.30 was found for the abnormal sustained loadcase, and therefore the tee is fit for purpose for the anticipated abnormal sustained (including settlement) loadings.

A.6.3 Shakedown

Figure A6 shows the Tresca stress range for the shakedown loadcase L9. Considering the mostly highly stressed region (adjacent the crotch), Table A9 shows the maximum linearised Tresca stress range exceeds the code allowable value.

A.6.3.4 Shakedown - Elastic-Plastic Assessment

The linear elastic stress analysis showed an unacceptable stress margin for the local plastic collapse criterion. In lieu of a more accurate approach to consider shakedown loads within IGE/TD/12, an elastic-perfectly-plastic (non-linear) analysis has been performed in accordance with ASME VIII Division 2 and the results are provided in Figure A7.

The strain at the most highly stressed region, located at the tee crotch, has been considered for assessment. From Figure A7, it is shown that the plastic equivalent strain (peeq) at this location under repeated cyclic loadings continues to increase (ratchet). The implication is that plastic strain could increase under repeated cyclic loading and eventually cause failure of the fitting.

It should be borne in mind that specified minimum mechanical material grade (X56) and geometrical properties (minimum taken from T1 1972) have been considered for the assessment and it may be possible to demonstrate acceptability of the fitting with measured material and geometrical properties.

It is recommended that material scrapings and geometrical measurements of the fitting are undertaken to determine the actual material grade of the fitting and actual fitting wall thicknesses. If the material grade is shown to be higher than X56 and the fitting is shown to be thicker, then a revised model and analysis would be recommended before considering replacing the tee.

A.7 CONCLUSIONS

- 1. A three-dimensional finite element model of the 900mmx900mm tee has been created.
- 2. System forces and moments, giving rise to the abnormal sustained and shakedown exceptions, have been extracted from the relevant pipe stress model and applied on the FE model together with internal pressure.
- 3. Finite element analysis of the 900mmx900mm tee has been undertaken using the ABAQUS software, with a subsequent design-by-analysis (DBA) assessment to the TD/12 DBA criterion for abnormal sustained and shakedown loadcases only.
- 4. The Tresca stress in the 900mmx900mm tee have been shown to be less than the TD/12 DBA criteria for global plastic collapse.
- 5. The Tresca stress in the 900mmx900mm tee have been shown to exceed the TD/12 DBA criteria for local plastic collapse, for the abnormal sustained loadcase.
 - a. A subsequent limit load analysis has been undertaken which demonstrates that the predicted collapse pressure exceeds the maximum incidental pressure of 79.5 barg.
- 6. The Tresca stress range in the 900mmx900mm tee exceeds the TD/12 DBA criteria for incremental plastic collapse (shakedown).
 - a. A subsequent elastic-perfectly plastic analysis to the requirements of ASME VIII Div II shows that shakedown is not achieved. The implication is that the plastic strain could increase under repeated cyclic loading and eventually cause failure of the fitting.

A.8 RECOMMENDATIONS

Conservative assumptions have been made on the 900mm x 900mm tee material grade and geometry. It is recommended that material scrapings and geometrical measurements of the fitting are undertaken to determine the actual material grade of the fitting and actual fitting wall thicknesses. If the material grade is shown to be higher than X56 and the fitting is shown to be thicker, then a revised model and analysis would be recommended before considering replacing the tee.

Matching Pipe			Тее							
	Wall Thickness	Material Grade	Header Diameter	Branch Diameter	Header Wall Thickness	Branch Wall Thickness	Crotch Radius	Material Grade X56		
Diameter										
								SMYS	UTS	
914.4	15.9	X65	945.2	31.3	31.3	945.2	50	386	489	

Table A1 – 900mm x 900mm Tee Details

Assessment Criteria	Reported Code Stress Ratio (%)	Model Name	Node Number
Abnormal Sustained	367.09		6180
Shakedown	127.13	RL_OLAT_SETTLEMENT_FF.02	15220

Table A2 – Loadcases Assessed

Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
6175	-3212	-203787	-260149	2051211	30853	-94889
6180	3212	203787	260149	-2187248	-28694	94878
6180	-6508	-153716	-274042	1516618	49697	130123
6190	6508	153716	274042	-1619111	-45316	-130146
6180	1278	-50615	9834	670630	-21003	-225001
9730	-1278	50615	-9834	-670543	27621	259054

<u>Table A3 – Loadcase 6, Occasional, Extracted Forces and Moments,</u> <u>900mmx900mm Tee, Node 6180</u>

Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
6175	-106331	-4368	- 1188629	-11020	-679148	-3729
6180	106331	4368	1188629	12389	750709	3344
					0 4	
6180	-10173	-9200	-911197	-18744	68099	11163
6190	10173	9200	911197	15856	-61253	-11200
	35 13					
6180	94349	-4828	277526	-6355	725420	12882
9730	-94349	4828	-277526	6355	-818808	-14507

<u>Table A4 – Loadcase 9, Shakedown, Extracted Forces and Moments,</u> <u>900mmx900mm Tee, Node 6180</u>

ABAQUS Node	Load Type	Value	
	FX (N)	260149	
	FY (N)	3212	
216204	FZ (N)	-203787	
310204	MX (N.mm)	94878000	
	MY (N.mm)	-2187248000	
	MZ (N.mm)	28694000	
	FX (N)	-274042	
	FY (N)	-6508	
216205	FZ (N)	153716	
310205	MX (N.mm)	130123000	
	MY (N.mm)	1516618000	
	MZ (N.mm)	-49697000	
Table A	5 – ABAQUS Inp	ut Loadcase I 6	

ABAQUS Node	Load Type	Value

	FX (N)	1188629	
316204	FY (N)	106331	
	FZ (N)	-4368	
	MX (N.mm)	3344000	
	MY (N.mm)	12389000	
	MZ (N.mm)	-7.5E+08	
	FX (N)	-911197	
	FY (N)	-10173	
216205	FZ (N)	9200	
316205	MX (N.mm)	11163000	
	MY (N.mm)	-1.9E+07	
	MZ (N.mm)	-6.8E+07	

<u>Table A6 – ABAQUS Input, Loadcase L9</u>

Region	Primary Membrane Stress,	Allowable Stress (MPa)	Margin on Global Plastic Collapse	Primary Local Membrane, P _L	Primary Bending, P _b (MPa)	$P_L + P_b$	Allowable Stress (MPa)	Margin on Local Plastic	
8	P_m (MPa)	(f)		. (MPa)			(1.5f)	Collapse	
Branch	186.35	332.50	1.78	339.60	222.40	562.00	498.75	0.89	
Branch 90°	88.17	332.50	3.77	184.00	520.90	704.90	498.75	0.74	
Header	144.40	332.50	2.30	339.60	215.40	555.00	498.75	0.94	
Crotch	186.35	332.50	1.78	581.20	222.40	803.60	498.75	0.65	
Flank	259.40	332.50	1.28	459.30	220.70	680.00	498.75	0.77	

Table A7 – Abnormal Sustained Results

	Abnormal Sustained Loadcase
Loading Factor at Instability	1.44
TD/12 Factor	0.9
Limiting Loading Factor	1.30

Table A8 – Limit Load Assessment

Loadcase	Loadcase Local Membrane + Bending Stress		Margin on Local Plastic Collanse	
	(IVIFA)	(MPa)	:	
L9	978.26	624.26	0.64	

Table A9 – Shakedown - ASME VIII Division 2, Incremental Plastic Collapse (Ratchetting) Results

Figure A2 – Finite Element Mesh

Figure A3 – Max. Principal Stress – Pressure

Figure A4 – Tresca Equivalent Stress – Abnormal Sustained Loadcase – Elastic

Figure A5 – Location of Max. PEEQ, for Limit Load Analysis – Abnormal Sustained

Figure A6 – Tresca Stress Range - Loadcase 9 – Shakedown Loadcase – Elastic

Report Number: AFAA-R0724-21 Revision: 01

Figure A7 – Equivalent Plastic Strain (PEEQ) - Loadcase 9 – ASME VIII Incremental Plastic Collapse Assessment

APPENDIX B 900MM X 90° BEND ASSESSMENT

B.1 GEOMETRY

In the absence of specific geometrical data the geometry of the bend is assumed to satisfy the criteria given in IGE/TD/12 and the minimum specified wall thickness and material properties of the 1973 edition of B1. The dimensions used are shown in Table B1.

B.2 FINITE ELEMENT MODEL

The three-dimensional finite element (FE) model of the bend was constructed using MSC Patran and analysed using the general purpose FE code ABAQUS. Twentynoded, three degree of freedom reduced integration brick (hexahedral) elements, C3D20R, were used for the analysis.

Beam elements representing the pipe stress model are tied to the open ends of the 3D solid model using rigid multi-point constraints (MPCs), as shown schematically in Figure B1. The three nodes J(1), J(2) and J(3) are coincident at the intersection but are not connected. The branch node, J(3), is fixed by a translational and rotational boundary condition, whilst forces and moments are applied at the header nodes J(1) and J(2).

The beams allow the application of forces and moments from the pipe stress model onto the solid model of the fitting. Adequate lengths of pipe are modelled such that the local effects of the MPCs are removed from the area of interest at the fitting.

The FE mesh created for the 900mmx90° bend is shown in Figure B2.

B.3 MATERIAL PROPERTIES

Young's modulus and Poisson's ratio equal to 210000 N/mm² and 0.3, respectively, were used in all analyses. The material grade of the tee is unknown and has therefore been modelled assuming minimum required mechanical properties as per T1. The bend and matching pipe is material grade X65 which has a SMYS of 448MPa and SMUTS of 530MPa.

B.4 LOADS

B.4.1 Internal Pressure

Distributed pressure loads were applied to all internal surfaces.

In order to represent the bend being 'capped off' downstream of the fitting, a pressure end loads is applied to End1 via the MPC. The pressure end load at End2 is taken into consideration by the reaction at the other MPC.

B.4.2 Applied Displacements

Large vertical displacements, due to settlement, were predicted from the pipe stress analysis, and therefore a strain based analysis has been undertaken of the bend, whereby boundary displacements/rotations, and not loads, are applied to the model.

For the assessment criterion considered (sustained loading), displacements and rotations were extracted for the most highly stressed fitting only, details of the IGE/TD/12 assessment considered and associated loadcase from the pipe stress analysis are provided in Table B2.

The applied displacements and rotations are given in Table B3.

B.5 ANALYSIS

The assessment of the 900mmx900mm tee, of Appendix A, indicated very high stresses in the fitting which exceeded the linear elastic assessment criteria of IGE/TD/12, for both plastic collapse and shakedown.

For this reason, and in order to obtain a more accurate solution, a non-linear analysis has been undertaken to determine the acceptability of the 900mmx90° bend.

B.5.1 Plastic Collapse (Limit Load Analysis)

Protection against plastic collapse is demonstrated by undertaking an elasticperfectly-plastic (limit load) analysis to determine the load which causes overall structural instability.

B.6 RESULTS

B.6.1 Internal Pressure

A contour plot of maximum principal stresses due to an internal pressure loading of 79.5 barg is presented in Figure B3. Away from concentrations, maximum principal stress in the adjoining pipe is in the range 200 to 230 MPa. Classical theory predicts a hoop stress of 228.6 MPa in the outside wall for a wall thickness of 15.9 mm. This provides some confidence in the model.

B.6.2 Abnormal Sustained

Table B4 summarises the results of the limit load assessment. A limiting load factor of 2.07 was found, and therefore the bend is fit for purpose for the anticipated abnormal sustained loadings (including settlement).

B.7 TABLES

	Matching Pipe		Bend		
		Material Grade	Wall	Material Grade X65	
Diameter	Wall Thickness		Thickness		
			(1111)	SMYS	UTS
914.4	15.9	X65	19.9	448	530

Table B1 – 900mm x 90° Bend Details

Assessment Criteria Reported Code Stress Ratio (%)		Model Name	Node Number	
Abnormal Sustained 154.03		KL_CLAY_SETTLEMENT_FF.C2	1550	

Table B2 – Loadcases Assessed

[Node	DX mm.	DY mm.	DZ mm.	RX radians	RY radians	RZ radians
	1535	-2.137	-99.223	1.796	0.0180	-0.0007	0.0012
	2691	-3.209	-138.172	2.423	0.0134	-0.0001	0.0116
Ť	Table B3 – Loadcase 6, Occasional, Extracted Displacements, 900mmx90						

Bend, Node 1535 and 2691

	Abnormal Sustained Loadcase
Loading Factor at Instability	2.3
TD/12 Factor	0.9
Limiting Loading Factor	2.07

Table B4 – Limit Load Assessment

Report Number: -R0724-21 Revision: 00

B.8 FIGURES

Step: Limit_load Increment 4: Step Time = 0.2500

Figure B2 - 900mm x 90° Bend - Mesh

-X

Ż

Figure B3 – 900mm x 90° Bend – Maximum Principal Stress – Pressure Only

B.9 CONCLUSIONS

- 1. A three-dimensional finite element model of the 900mmx90° bend has been created.
- 2. Displacements and rotations, giving rise to the abnormal sustained exception, have been extracted from the relevant pipe stress model and applied on the FE model together with internal pressure.
- 3. Finite element analysis of the 900mmx90° bend has been undertaken using the ABAQUS software, with a subsequent limit load analysis assessment to the TD/12 criterion for abnormal sustained loading only.
- 4. A limiting load factor of 2.07 was found, and therefore the bend is fit for purpose for the anticipated abnormal sustained loadings (including settlement).

APPENDIX C 900MM X 300MM SWEEPOLET ASSESSMENT C.1 GEOMETRY

In the absence of specific geometrical data the geometry of the sweepolet is assumed to meet the requirements of the 1971 edition of F1. The dimensions used are shown in Figure C1.

C.2 FINITE ELEMENT MODEL

The three-dimensional finite element (FE) model of the sweepolet was constructed using MSC Patran and analysed using the general purpose FE code ABAQUS. Twenty-noded, three degree of freedom reduced integration brick (hexahedral) elements, C3D20R, were used for the analysis.

Beam elements representing the pipe stress model are tied to the open ends of the 3D solid model using rigid multi-point constraints (MPCs), as shown schematically in Figure C2. The three nodes J(1), J(2) and J(3) are coincident at the intersection but are not connected. The branch node, J(3), is fixed by a translational and rotational boundary condition, whilst forces and moments are applied at the header nodes J(1) and J(2).

The beams allow the application of forces and moments from the pipe stress model onto the solid model of the fitting. Adequate lengths of header and branch pipe are modelled such that the local effects of the MPCs are removed from the area of interest at the fitting.

The FE mesh created for the 900mmx300mm sweepolet is shown in Figure C3.

C.3 MATERIAL PROPERTIES

Young's modulus and Poisson's ratio equal to 210000 N/mm² and 0.3, respectively, were used in all analyses. The material grade of the sweepolet is unknown and has therefore been modelled assuming minimum required mechanical properties as per F1 1972. A material grade of X60 has been assumed which has a SMYS of 413MPa and SMUTS of 517MPa.

Material property details for the sweepolet and matching header and branch are provided in Table C1.

C.4 LOADS

C.4.1 Internal Pressure

Distributed pressure loads were applied to all internal surfaces.

In order to represent the branch and one of the header sections being 'capped off' downstream of the fitting, pressure end loads were applied to the header pipe elements via the MPCs. The branch pressure end load was taken into consideration by the reaction at the branch boundary condition.

C.4.2 System Forces and Moments

For each of the assessment criteria considered, forces and moments were extracted for the most highly stressed fitting only, details of the IGE/TD/12 assessments considered and associated loadcase from the pipe stress analysis are provided in Table C2.

Before application to the FE model, the extracted forces and moments were converted to the axis convention of the FE model.

The extracted forces and moments are provided in Table C3 to Table C6 and the forces and moments applied to the FE model are given in Table C7 to Table C10.

C.5 ANALYSIS

The assessment of the 900mmx900mm tee, of Appendix A, indicated very high stresses in the fitting which exceeded the linear elastic assessment criteria of IGE/TD/12, for both plastic collapse and shakedown. For this reason, and in order to obtain a more accurate solution, non-linear analyses have been undertaken to determine the acceptability of the 900mmx300mm sweepolet.

C.5.1 Plastic Collapse (Limit Load Analysis)

Protection against plastic collapse is demonstrated by undertaking an elasticperfectly-plastic (limit load) analysis to determine the load which causes overall structural instability.

C.5.2 Shakedown (Incremental Plastic Collapse)

IGE/TD/12 does not provided guidance for undertaking a non-linear analysis to consider shakedown loads, therefore an elastic-perfectly-plastic analysis has been performed in accordance with ASME VIII Division 2. Details of the assessment are provided in Section 3.2.1.

C.6 RESULTS

C.6.1 Internal Pressure

A contour plot of maximum principal stress due to an internal pressure loading of 79.5 barg is presented in Figure C4. Away from concentrations, maximum principal stress in the adjoining pipe is in the range 200 to 230 MPa. Classical theory predicts a hoop stress of 228.6 MPa in the outside wall for a wall thickness of 15.9 mm. This provides some confidence in the model.

C.6.1.5 Sustained

Table C11 summarises the results of the assessments, limiting loading factors of 1.52 and 1.33 were found for the abnormal and normal sustained loadcases, and therefore the sweepolet is fit for purpose for the anticipated sustained loadings.

C.6.2 Shakedown

Only the most highly stressed region, located at the sweepolet crotch, has been considered for assessment. From Figure C5, it is shown that for an assumed minimum material grade of X60 shakedown is successfully achieved.

Figure C6 shows the maximum predicted displacement of the fitting for thirteen repeat load cycles. It is shown that the predicted displacement does not change significantly from the first to last load cycle. It can thus be inferred that the overall dimensions of the fitting have not changed and the tee satisfies the ASME VIII elastic-plastic ratcheting criteria.

C.6.3 Fatigue

Table C12 shows the results of the fatigue assessment, the maximum past + future cumulative usage was calculated to be 0.43 at the sweepolet crotch, and therefore the sweepolet is considered to be fit for purpose for the past and anticipated future fatigue duties.

C.7 CONCLUSIONS

- 1. A three-dimensional finite element model of the 900mmx300mm sweepolet has been created.
- 2. System forces and moments, giving rise to the sustained, shakedown and fatigue exceptions have been extracted from the relevant pipe stress model and applied on the FE model together with internal pressure.
- 3. Finite element analysis of the 900mmx300mm sweepolet has been undertaken using the ABAQUS software, with a subsequent limit load and fatigue assessment to the TD/12 DBA criterion for sustained and fatigue loadcases only.
- 4. In lieu of a TD/12 elastic-plastic shakedown criterion, an incremental plastic collapse assessment has been undertaken to the requirements of ASME VIII Division 2.
- 5. Limiting loading factors of 1.57 and 1.46 were found for the normal and abnormal sustained loadcases, and therefore the sweepolet is fit for purpose for the anticipated sustained loadings.
- 6. The 900mmx300mm sweepolet has been shown to satisfy the elastic-plastic incremental plastic collapse criterion of ASME VIII Div 2.
- 7. The 900mmx300mm sweepolet has been shown to satisfy the DBA fatigue criterion of TD/12.

	Matching Pipe									Sweepolet	
Header				8	Brand						
	Wall Thickness	Material Grade			Material Grade			Material Grade			
Diameter			X60	Diameter	Wall Thickness	X46		Dimensions	X60		
		SMYS	UTS			SMYS	UTS]	SMYS	UTS	
914.4	15.9	413	517	219.1	8.2	317	434	See Figure C1	413	517	

Table C1 – 900mm x 300mm Sweepolet Details

Assessment	Reported Code Stress Ratio (%)	Usage	Model Name	Node Number
Abnormal Sustained	341.18		KL_CLAY_SETTLEMENT_FF_01	6070
Sustained	112.54	-	KL_FIRM_CLAY_FF_01_PITS_SOFT_FILL	15090
Shakedown	165.64	-	KL_FIRM_CLAY_FF_01_PITS_SOFT_FILL	15090
Fatigue	-	1.16	1971_FIRM_CLAY 1998_RF_FIRM_CLAY 1998_FF_FIRM_CLAY 2003-2021_RF_FIRM_CLAY 2003-2021_FF_FIRM_CLAY 2021-2050_X10_RF_FIRM_CLAY_NO_PITS_SOFT_FILL 2021-2050_X10_FF_FIRM_CLAY_NO_PITS_SOFT_FILL	6070

Table C2 – Loadcases Assessed

Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
6069	-411	9950	-3296	-18180	-4172	-7268
6070	411	-9950	3296	18180	5062	9954
6150	437	-380703	-244247	1746167	36785	-85405
6070	-437	380703	244247	-1765248	-36807	85405
		12				5 5
6070	-401	-369723	-249701	1747068	31745	-95360
6116	401	369723	249701	-1919867	-31554	95355
	* ***********************************	10 1			A REAL PROPERTY AND A REAL PROPERTY OF	

<u>Table C3 – Abnormal Sustained Extracted Forces and Moments,</u> <u>900mmx300mm Sweepolet, Node 6070</u>

Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
15081	-283690	-362	-146420	3105	-240441	6766
15090	283690	362	146420	-3105	137070	-6511
	3				2	
15090	-239652	-666	-167508	3454	-100209	6691
15094	239652	666	167508	-3454	15617	-6354
15090	-30100	251	17290	-349	-36860	-180
15480	30100	-251	-17290	213	20606	180

Table C4 – Sustained Extracted Force	s and Moments	900mmx300mm						
Sweepolet, Node 15090								

	Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
	15081	-812772	-894	-347182	8011	-507412	17125
	15090	812772	894	347182	-8011	262303	-16494
			2				
14	15090	-702356	-1000	-394448	8236	-150877	16615
L4	15094	702356	1000	394448	-8236	-48320	-16110
	3						
	15090	-89357	69	38321	-225	-111425	-121
	15480	89357	-69	-38321	188	63172	121
	15081	76832	-117	42190	-990	70753	-1506
	15090	-76832	117	-42190	990	-40967	1588
12	15090	65354	193	48869	-1145	31500	-1800
LZ	15094	-65354	-193	-48869	1145	-6821	1702
	15090	7885	-271	-5478	155	9467	212
	15480	-7885	271	5478	-9	-5209	-212
ble C5 -	Loadcas	e 9 (1 4-1	2) Shak	edown E	vtracted	Forces an	d Momen

<u>Table C5 – Loadcase 9 (L4-L2), Shakedown, Extracted Forces and Moments,</u> <u>900mmx300mm Sweepolet, Node 15090</u>

98 - 2003	Reverse	Flow	

	6070	32940	16545	617343	5735	64584	-4587
	6070	-40768	-15517	-565858	-6031	-26481	3389
	6116	40768	15517	565858	5875	45887	-3910
~		58 K-					A
			1998 - 20	003 Forward F	ow		1
	6069	6204	1265	38601	-182	30638	-999
8	6070	-6204	-1265	-38601	182	-41060	1341
3							
18	6150	50448	-50414	-1913927	-20391	140854	-6965
20	6070	-50448	50414	1913927	20439	-143426	7035
	6070	57917	-48989	-1864703	-20621	184487	-8375
	6116	-57917	48989	1864703	21126	-212055	9115
				6			
	6069	6604	1190	36037	-160	28852	-913
4	6070	-6604	-1190	-36037	160	-38582	1234
2	10000-0011-046-64	1994 00000000					
19	6150	52351	-48659	-1846342	-19949	144518	-7227
	6070	-52351	48659	1846342	19995	-147188	7299
	6070	60304	-47317	-1800454	-20155	185769	-8533
4	6116	-60304	47317	1800454	20635	-214474	9303
		1	I	1	[-
3	6069	9425	947	18295	419	15952	-782
1	6070	-9425	-947	-18295	-419	-20892	1038
	1004-014-010-0	North Contraction			And the state of the set	National Section of the	SALENA TOTAL
L10	6150	62815	-32721	-1232412	-16063	165472	-8649
12:00:00	6070	-62815	32721	1232412	16081	-168676	8735
					-		
	6070	74036	-31676	-1209398	-15662	189567	-9773
	6116	-74036	31676	1209398	16036	-224809	10719
2	6069	-1767	639	20004	312	13923	-625
1	6070	1/6/	-639	-20004	-312	-19324	/9/
	6450	0747	4 6 9 9 9			44400	1050
L11	6150	-9/1/	-16833	-610284	-50/8	-11122	1356
1.000000	6070	9/1/	16833	610284	5055	11618	-13/0
	6070	40074	46422	504000	4740	7700	F 70
1	6070	-12074	-16120	-584206	-4/43	//06	572
	6116	12074	16120	584206	4534	-1959	-/26
142		4007	400	10010		44400	
L12	6069	-1887	420	19912	-223	14168	-316

Report Number._____-R0724-21 Revision: 01

	6070	1887	-420	-19912	223	-19545	429
	6150	-9340	-16316	-594445	-4805	-10607	1292
	6070	9340	16316	594445	4786	11083	-1305
	6070	-11799	-15824	-568617	-5010	8462	876
1	6116	11799	15824	568617	4742	-2846	-1027
					4		
			2003 - 20	021 Reverse Fl	ow		
2	6069	11638	-585	-60569	818	-46178	1447
1	6070	-11638	585	60569	-818	62532	-1605
L8	6150	-48616	-29659	-1072027	-22703	33625	1841
1.022	6070	48616	29659	1072027	22658	-31146	-1908
1		2			3		
1	6070	-39716	-30443	-1149389	-21839	-31386	3513
	6116	39716	30443	1149389	22033	50291	-4021
		11500	570	50500	045	45 400	4.400
1	6069	11580	-5/0	-59590	815	-45430	1422
L9	6070	-11580	570	59590	-815	61520	-15/6
	6450	47246	20164	105 4774	22275	24450	1700
	6150	-4/316	-29164	-1054/74	-22375	34150	1/83
	6070	4/310	29164	1054774	22331	-31/3/	-1848
1	6070	20/12	20022	1120979	21516	20792	2424
3	6116	-30413	29922	1120878	21722	-29765	-201/
	0110	30413	23322	1150878	21/22	40000	-3314
	6069	11268	-239	-51571	1071	-39683	940
2.00	6070	-11268	239	51571	-1071	53608	-1005
8							
1	6150	-38703	-24765	-883556	-19434	36704	1441
L10	6070	38703	24765	883556	19380	-34730	-1494
4							
	6070	-29764	-25129	-949214	-18310	-18878	2499
	6116	29764	25129	949214	18476	33046	-2879
	6069	904	-317	-13119	31	-10172	640
1	6070	-904	317	13119	-31	13714	-726
L11	6150	-19252	-6761	-212063	-5027	-8231	1368
	6070	19252	6761	212063	4973	9213	-1395
	6070	-19361	-7151	-228860	-4942	-22927	2120

6116

19361

7151

228860

4462

32143

-2368

6069 931 -302 -1291333 -10024609 -33 -931 302 13511 -691 6070 12913 6150 -18783 -6577 -207507 -4869 -7725 1321 L12 6070 18783 6577 207507 4817 8683 -1347 -18845 -224033 -4785 -22194 2038 6070 -6955 6116 18845 6955 224033 4336 31164 -2278 2003 - 2021 Forward Flow 6069 8954 -1422 -54249 653 -38771 1871 6070 -8954 1422 54249 -653 53418 -2256 6150 4637 -21281 -696498 -1587480907 -4345 L8 6070 4351 -4637 21281 696498 15742 -81144 6070 13214 -23308 -766874 -15089 27725 -2096 6116 -13214 23308 766874 13792 -34016 2264 6069 7876 -926 -36727 573 -25405 1295 -573 6070 -7876 926 36727 35321 -1545 27267 -11206 -346203 -10290 89387 6150 -5360 L9 6070 -27267 11206 346203 10192 -90778 5397 6070 35828 -12505 -394069 -9619 55457 -3852 6116 -35828 12505 394069 8701 -72511 4309 8950 -567 -43429 1315 -31132 622 6069 -8950 43429 -775 6070 567 -1315 42858 6150 19976 -14344 -447205 -11805 88709 -5061 L10 6070 -19976 14344 447205 11685 -89728 5088 6070 29195 -15328-503422 -1037046870 -4314 6116 15328 503422 9506 4687 -29195 -60767 6069 1606 110 -12227 -9522 841 -34 6070 -1606 -110 12227 -841 12824 64 L11

6150

-8297

-5569

-168730

-4400

4676

375

	6070	8297	5569	168730	4347	-4253	-387
	6070	-7216	-5517	-184318	-3506	-8571	323
2	6116	7216	5517	184318	3234	12005	-415
~							CA 80
	6069	1356	-204	-11765	262	-8846	470
	6070	-1356	204	11765	-262	12023	-525
2							
112	6150	-8319	-5485	-168887	-4286	4438	296
LIZ	6070	8319	5485	168887	4237	-4014	-307
5							
	6070	-7487	-5756	-184018	-3976	-8009	832
	6116	7487	5756	184018	3587	11573	-928
		90.5 S ⁻			44 - 54		
		F 2	2021 - 20)50 Reverse Fl	ow		7
	6069	11647	-584	-60557	818	-46167	1447
4	6070	-11647	584	60557	-818	62517	-1605
L8							
	6150	-48553	-29655	-1071961	-22706	33757	1835
	6070	48553	29655	1071961	22660	-31281	-1901
	6070	-39642	-30438	-1149308	-21842	-31237	3506
ŝ	6116	39642	30438	1149308	22038	50106	-4013
3	6069	11589	-569	-59580	815	-45420	1422
	6070	-11589	569	59580	-815	61506	-1576
			104 M 104 00 M 10				1017254 00425
L9	6150	-47255	-29160	-1054713	-22378	34278	1776
enten i	6070	47255	29160	1054713	22334	-31868	-1841
		2					
	6070	-38341	-29916	-1130805	-21519	-29638	3417
2	6116	38341	29916	1130805	21727	47889	-3906
2	6069	112/4	-241	-51563	10/1	-39676	941
1	6070	-112/4	241	51563	-10/1	53598	-1007
1	6450	20000	24766	002542	10420	26704	1420
L10	6150	-38660	-24/66	-883513	-19429	36/94	1430
\$	6070	38660	24/66	883513	19375	-34822	-1489
	6070	20714	25122	040162	10205	10776	2405
1	6116	-29/14	-25132	-949162	-18305	-10//0	2495
	0110	29/14	23132	949102	16408	25212	-28/5
111	6060	000	_217	_1211/	21	-10167	640
LII	0009	500	-51/	-13114	51	-10101	040

Report Number: -R0724-21 Revision: 01

	6070	-908	317	13114	-31	13708	-725
	6150	-19224	-6759	-212038	-5028	-8173	1365
	6070	19224	6759	212038	4974	9153	-1392
	6070	-19328	-7148	-228828	-4943	-22861	2117
	6116	19328	7148	228828	4464	32061	-2364
	6069	935	-302	-12908	33	-10019	609
2	6070	-935	302	12908	-33	13504	-691
	March 2014 March 19		Screens Automotives		atoma da chedita di	12/10/04/control terring 1	
L12	6150	-18756	-6575	-207482	-4870	-7668	1318
Service .	6070	18756	6575	207482	4819	8624	-1344
	6070	-18812	-6953	-224002	-4786	-22129	2035
	6116	18812	6953	224002	4338	31084	-2275
					÷		
			2021 - 20	50 Forward F	ow		10.00
L8	6069	8966	-1410	-54234	652	-38/56	1863
	6070	-8966	1410	54234	-652	53400	-2244
	6450	4700	04055	606400	45044	01001	1054
	6150	4723	-21255	-696408	-15914	81091	-4351
	6070	-4723	21255	696408	15/84	-81332	4357
1	6070	12210	22266	700700	15122	27022	2112
4	6116	12216	-23200	-/00/00	-15152	2/952	-2115
	0110	-15510	25200	/00/00	15054	-54271	2204
	6069	7883	-919	-36719	572	-25397	1290
10	6070	-7883	919	36719	-572	35311	-1538
i.	0070	/005	515	50/15	572	55511	1000
1	6150	27315	-11191	-346154	-10319	89489	-5364
L9	6070	-27315	11191	346154	10222	-90882	5401
1							
8	6070	35885	-12480	-394011	-9649	55572	-3863
	6116	-35885	12480	394011	8743	-72653	4322
	Page server reportance		The second second second	Promotion and the second second	 Contracting Contracting Contr		
	6069	8959	-559	-43419	1314	-31122	616
	6070	-8959	559	43419	-1314	42846	-767
L10	6150	20036	-14326	-447144	-11841	88837	-5065
	6070	-20036	14326	447144	11722	-89859	5093
	6070	29267	-15298	-503349	-10408	47014	-4326

	6116	-29267	15298	503349	9557	-60945	4700
		24. 82			74. 77		57
	6069	1609	113	-12224	841	-9519	-37
	6070	-1609	-113	12224	- <mark>841</mark>	12819	67
111	6150	-8277	-5562	-168710	-4415	4718	374
111	6070	8277	5562	168710	4362	-4296	-385
-0 							
	6070	-7192	-5506	-184294	-3521	-8523	318
	6116	7192	5506	184294	3255	11947	-410
	15981	6069	1359	-201	-11762	261	-8843
	15990	6070	-1359	201	11762	-261	12019
							5. X3
112	15990	6150	-8299	-5478	-168866	-4301	4480
LIZ	16000	6070	8299	5478	168866	4253	-4057
							2 N.
	15990	6070	-7463	-5744	-183994	-3991	-7961
	16650	6116	7463	5744	183994	3608	11514

Table C6 – Fatigue Extracted Forces and Moments, 900mmx300mm Sweepolet

Level Trees	Va	lue
Load Type	Node 25004	Node 25002
FX (N)	-249701	244247
FY (N)	-401	-437
FZ (N)	369723	-380703
MX (N.mm)	-9.5E+07	85405000
MY (N.mm)	1.75E+09	-1.8E+09
MZ (N.mm)	-3.2E+07	36807000
able C7 – ABA	AQUS Input, Abr	normal Sustai

Land Taxa	Va	lue
Load Type FX (N) FY (N) FZ (N) MX (N.mm) MY (N.mm) MZ (N.mm)	Node 25004	Node 25002
FX (N)	239652	283690
FY (N)	167508	-146420
FZ (N)	666	-362
MX (N.mm)	3454000	-3105000
MY (N.mm)	-6691000	6511000
MZ (N.mm)	1E+08	-1.4E+08
Table CO	APAOLIS Input	t Sustained

<u> Table C8 – ABAQUS Input, Sustained</u>

	Load Turns	Value				
14	Load Type	Node 25004	Node 25002			
L4	FX (N)	702356	812772			

	FY (N)	394448	-347182						
	FZ (N)	1000	-894						
	MX (N.mm)	8236000	-8011000						
	MY (N.mm)	-1.7E+07	16494000						
	MZ (N.mm)	1.51E+08	-2.6E+08						
-	· · · · · · · · · · · · · · · · · · ·								
	FX (N)	-65354	-76832						
	FY (N)	-48869	42190						
1.2	FZ (N)	-193	-117						
LZ	MX (N.mm)	-1145000	990000						
	MY (N.mm)	1800000	-1588000						
	MZ (N.mm)	-3.2E+07	40967000						
Table C9 – ABAQUS Input, L9 (L4-L2), Shakedown									

				1998	3 - 2003 Rever	se Flow					
6 		L8	Ľ	9	L1	10	L1	1	L1	L12	
FX (N)	-3664461	3842326	-3620913	3794576	-3029581	3180388	-578123	630114	-565858	617343	
FY (N)	-166067	138291	-162730	135649	-149187	125343	-41427	33620	-40768	32940	
FZ (N)	97466	-101934	96346	-100723	80683	-84767	15627	-16823	15517	-16545	
MX (N.mm)	13450000	-1.9E+07	13219000	-1.9E+07	11994000	-1.7E+07	3213000	-4703000	3389000	-4587000	
MY (N.mm)	-2.8E+07	26875000	-2.7E+07	26298000	-2.2E+07	22417000	-5794000	5953000	-6031000	5735000	
MZ (N.mm)	1.49E+08	-2.8E+08	1.47E+08	-2.7E+08	1.43E+08	-2.5E+08	27699000	-6.6E+07	26481000	-6.5E+07	
1998 - 2003 Forward Flow											
*		L8	L	9	L1	10	L1	1	L12		
FX (N)	-1864703	1913927	-1800454	1846342	-1209398	1232412	-584206	610284	-568617	594445	
FY (N)	57917	-50448	60304	-52351	74036	-62815	-12074	9717	-11799	9340	
FZ (N)	48989	-50414	47317	-48659	31676	-32721	16120	-16833	15824	-16316	
MX (N.mm)	-8375000	7035000	-8533000	7299000	-9773000	8735000	572000	-1370000	876000	-1305000	
MY (N.mm)	-2.1E+07	20439000	-2E+07	19995000	-1.6E+07	16081000	-4743000	5055000	-5010000	4786000	
MZ (N.mm)	-1.8E+08	1.43E+08	-1.9E+08	1.47E+08	-1.9E+08	1.69E+08	-7706000	-1.2E+07	-8462000	-1.1E+07	
				2003	3 - 2021 Rever	se Flow					
		L8	L	9	L1	.0	L11		L1	.2	
FX (N)	-1149389	1072027	-1130878	1054774	-949214	883556	-228860	212063	-224033	207507	
FY (N)	-39716	48616	-38413	47316	-29764	38703	-19361	19252	-18845	18783	
FZ (N)	30443	-29659	29922	-29164	25129	-24765	7151	-6761	6955	-6577	
MX (N.mm)	3513000	-1908000	3424000	-1848000	2499000	-1494000	2120000	-1395000	2038000	-1347000	
MY (N.mm)	-2.2E+07	22658000	-2.2E+07	22331000	-1.8E+07	19380000	-4942000	4973000	-4785000	4817000	
MZ (N.mm)	31386000	31146000	29783000	31737000	18878000	34730000	22927000	-9213000	22194000	-8683000	
				2003	8 - 2021 Forwa	rd Flow					
		L8	L	9	L1	10	L1	11	L1	.2	

Report Number: -R0724-21 Revision: 01

				51							
FX (N)	-766874	696498	-394069	346203	-503422	447205	-184318	168730	-184018	168887	
FY (N)	13214	-4637	35828	-27267	29195	-19976	-7216	8297	-7487	8319	
FZ (N)	23308	-21281	12505	-11206	15328	-14344	5517	-5569	5756	-5485	
MX (N.mm)	-2096000	4351000	-3852000	5397000	-4314000	5088000	323000	-387000	832000	-307000	
MY (N.mm)	-1.5E+07	15742000	-9619000	10192000	-1E+07	11685000	-3506000	4347000	-3976000	4237000	
MZ (N.mm)	-2.8E+07	81144000	-5.5E+07	90778000	-4.7E+07	89728000	8571000	4253000	8009000	4014000	
2021 - 2050 Reverse Flow											
		L8	L	9	L1	LO	L1	.1	L1	.2	
FX (N)	-1149308	1071961	-1130805	1054713	-949162	883513	-228828	212038	-224002	207482	
FY (N)	-39642	48553	-38341	47255	-29714	38660	-19328	19224	-18812	18756	
FZ (N)	30438	-29655	29916	-29160	25132	-24766	7148	-6759	6953	-6575	
MX (N.mm)	3506000	-1901000	3417000	-1841000	2495000	-1489000	2117000	-1392000	2035000	-1344000	
MY (N.mm)	-2.2E+07	22660000	-2.2E+07	22334000	-1.8E+07	19375000	-4943000	4974000	-4786000	4819000	
MZ (N.mm)	31237000	31281000	29638000	31868000	18776000	34822000	22861000	-9153000	22129000	-8624000	
		94 - 254 264	tide (ja		. id		- 91-		9		
				2021	1 - 2050 Forwa	rd Flow					
		L8	L	9	L1	LO	L1	.1	L1	.2	
FX (N)	-766766	696408	-394011	346154	-503349	447144	-184294	168710	-183994	168866	
FY (N)	13316	-4723	35885	-27315	29267	-20036	-7192	8277	-7463	8299	
FZ (N)	23266	-21255	12480	-11191	15298	-14326	5506	-5562	5744	-5478	
MX (N.mm)	-2113000	4357000	-3863000	5401000	-4326000	5093000	318000	-385000	827000	-305000	
MY (N.mm)	-1.5E+07	15784000	-9649000	10222000	-1E+07	11722000	-3521000	4362000	-3991000	4253000	
MZ (N.mm)	-2.8E+07	81332000	-5.6E+07	90882000	-4.7E+07	89859000	8523000	4296000	7961000	4057000	
			31			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Table C10 – ABAQUS Input, Fatigue

Table CIT - Linit Load Assessment	Table C11 -	Limit Load	Assessment
-----------------------------------	-------------	------------	------------

Caesar		Branch Weld					Header Weld				Crotch			
Model	Loadcase	Peak Stress	Allowable Cycles	Cycles	Usage	Peak Stress	Allowable Cycles	Cycles	Usage	Peak Stress	Allowable Cycles	Cycles	Usage	
	L8	385.7	1.10E+04	4	3.63E-04	541	4.00E+03	4	1.00E-03	796.4	1.78E+03	4	2.24E-03	
	L9	366.1	1.29E+04	27	2.09E-03	514.8	4.64E+03	27	5.82E-03	756.9	2.08E+03	27	1.30E-02	
98-03R	L10	140.8	2.27E+05	675	2.98E-03	205.4	7.30E+04	675	9.24E-03	240.5	6.48E+04	675	1.04E-02	
	L11	45.25	6.83E+06	5400	7.90E-04	75.27	1.48E+06	5400	3.64E-03	75.27	2.11E+06	5400	2.56E-03	
-	L12	43.6	7.64E+06	4050	5.30E-04	70.2	1.83E+06	4050	2.21E-03	70.2	2.61E+06	4050	1.55E-03	
	L8	346.1	1.53E+04	0	0.00E+00	490.2	5.37E+03	0	0.00E+00	702.7	2.60E+03	0	0.00E+00	
	L9	326.5	1.82E+04	2	1.10E-04	462.3	6.41E+03	2	3.12E-04	662.9	3.09E+03	2	6.46E-04	
98-03F	L10	68.74	1.95E+06	53	2.72E-05	92.99	7.87E+05	53	6.73E-05	141	3.22E+05	53	1.65E-04	
	L11	32.82	1.79E+07	81	4.52E-06	50.81	4.83E+06	81	1.68E-05	66.72	3.03E+06	81	2.67E-05	
	L12	30.23	2.29E+07	265	1.16E-05	45.49	6.72E+06	265	3.94E-05	57.87	4.65E+06	265	5.70E-05	
s	L8	346.4	1.52E+04	0	0.00E+00	497.4	5.14E+03	0	0.00E+00	702.3	2.60E+03	0	0.00E+00	
	L9	327.4	1.80E+04	1	5.54E-05	469.7	6.11E+03	1	1.64E-04	663.8	3.08E+03	1	3.25E-04	
03-21R	L10	83.77	1.08E+06	5	4.64E-06	124.8	3.26E+05	5	1.54E-05	153.6	2.49E+05	5	2.01E-05	
	L11	28.78	2.66E+07	31	1.17E-06	45.19	6.86E+06	31	4.52E-06	59.5	4.28E+06	31	7.25E-06	
	L12	24.53	4.29E+07	139	3.24E-06	40.02	9.88E+06	139	1.41E-05	50.88	6.84E+06	139	2.03E-05	
	L8	338.3	1.63E+04	4	2.45E-04	491.1	5.34E+03	4	7.48E-04	682.7	2.83E+03	4	1.41E-03	
	L9	313.9	2.05E+04	22	1.07E-03	460	6.50E+03	22	3.38E-03	632.1	3.57E+03	22	6.17E-03	
03-21F	L10	68.38	1.98E+06	502	2.54E-04	109.2	4.86E+05	502	1.03E-03	131.5	3.96E+05	502	1.27E-03	
	L11	27.75	2.96E+07	765	2.58E-05	41.54	8.83E+06	765	8.66E-05	56.3	5.05E+06	765	1.51E-04	
	L12	23.37	4.96E+07	2495	5.03E-05	36.96	1.25E+07	2495	1.99E-04	47.76	8.27E+06	2495	3.02E-04	
	L8	346.4	1.52E+04	4	2.63E-04	497.4	5.14E+03	4	7.78E-04	702.3	2.60E+03	4	1.54E-03	
21-50P	L9	327.4	1.80E+04	12	6.65E-04	469.7	6.11E+03	12	1.96E-03	663.8	3.08E+03	12	3.89E-03	
21-200	L10	83.76	1.08E+06	46	4.27E-05	124.8	3.26E+05	46	1.41E-04	153.6	2.49E+05	46	1.85E-04	
	L11	28.77	2.66E+07	294	1.11E-05	45.18	6.86E+06	294	4.28E-05	59.49	4.28E+06	294	6.87E-05	

Report Number:	-R0724-21
Revision: 00	

	L12	24.53	4.29E+07	1310	3.05E-05	40.01	9.88E+06	1310	1.33E-04	50.87	6.85E+06	1310	1.91E-04
	L8	338.3	1.63E+04	20	1.22E-03	491	5.35E+03	20	3.74E-03	682.7	2.83E+03	20	7.06E-03
	L9	313.9	2.05E+04	1320	6.45E-02	460	6.50E+03	1320	2.03E-01	632	3.57E+03	1320	3.70E-01
21-50F	L10	68.37	1.98E+06	3100	1.57E-03	109.1	4.87E+05	3100	6.36E-03	131.4	3.97E+05	3100	7.80E-03
	L11	27.74	2.97E+07	4720	1.59E-04	41.53	8.84E+06	4720	5.34E-04	56.32	5.04E+06	4720	9.36E-04
	L12	23.36	4.97E+07	15390	3.10E-04	36.94	1.26E+07	15390	1.23E-03	47.76	8.27E+06	15390	1.86E-03
Cumulative Usage					<u>0.08</u>				<u>0.25</u>				<u>0.43</u>

Table C12 – Fatigue Results

Figure C3 – 900mm x 300mm Sweepolet Mesh

Figure C4 – 900mm x 300mm – Max. Principal Stress – Pressure Only

Figure C6 – Max. Displacement - Loadcase 9 – X60 Material Grade - ASME VIII Incremental Plastic Collapse

APPENDIX D 900MM X 200MM SWEEPOLET ASSESSMENT

D.1 GEOMETRY

In the absence of specific geometrical data the geometry of the sweepolet is assumed to meet the requirements of the 1971 edition of F1. The dimensions used are shown in Figure D1.

D.2 FINITE ELEMENT MODEL

The three-dimensional finite element (FE) model of the sweepolet was constructed using MSC Patran and analysed using the general purpose FE code ABAQUS. Twenty-noded, three degree of freedom reduced integration brick (hexahedral) elements, C3D20R, were used for the analysis.

Beam elements representing the pipe stress model are tied to the open ends of the 3D solid model using rigid multi-point constraints (MPCs), as shown schematically in Figure D2. The three nodes J(1), J(2) and J(3) are coincident at the intersection but are not connected. The branch node, J(3), is fixed by a translational and rotational boundary condition, whilst forces and moments are applied at the header nodes J(1) and J(2).

The beams allow the application of forces and moments from the pipe stress model onto the solid model of the fitting. Adequate lengths of header and branch pipe are modelled such that the local effects of the MPCs are removed from the area of interest at the fitting.

The FE mesh created for the 900mmx200mm sweepolet is shown in Figure D3.

D.3 MATERIAL PROPERTIES

Young's modulus and Poisson's ratio equal to 210000 N/mm² and 0.3, respectively, were used in all analyses. The material grade of the sweepolet is unknown and has therefore been modelled assuming minimum required mechanical properties as per F1 1972. A material grade of X60 has been assumed which has a SMYS of 413MPa and SMUTS of 517MPa.

Material property details for the sweepolet and matching header and branch are provided in Table D1.

D.4 LOADS

D.4.1 Internal Pressure

Distributed pressure loads were applied to all internal surfaces.

In order to represent the branch and one of the header sections being 'capped off' downstream of the fitting, pressure end loads were applied to the header pipe elements via the MPCs. The branch pressure end load was taken into consideration by the reaction at the branch boundary condition.

D.4.2 System Forces and Moments

For each of the assessment criteria considered, forces and moments were extracted for the most highly stressed fitting only, details of the IGE/TD/12 assessments considered and associated loadcase from the pipe stress analysis are provided in Table D2.

Before application to the FE model, the extracted forces and moments were converted to the axis convention of the FE model.

The extracted forces and moments are given in Table D3 to Table D6 and the forces and moments applied to the FE model are given in Table D7 to Table D10.

D.5 ANALYSIS

The assessment of the 900mmx900mm tee, of Appendix A, indicated very high stresses in the fitting which exceeded the linear elastic assessment criteria of IGE/TD/12, for both plastic collapse and shakedown. For this reason, and in order to obtain a more accurate solution, non-linear analyses have been undertaken to determine the acceptability of the 900mmx200mm sweepolet.

D.5.1 Plastic Collapse (Limit Load Analysis)

Protection against plastic collapse is demonstrated by undertaking an elasticperfectly-plastic (limit load) analysis to determine the load which causes overall structural instability.

D.5.2 Shakedown (Incremental Plastic Collapse)

IGE/TD/12 does not provided guidance for undertaking a non-linear analysis to consider shakedown loads, therefore an elastic-perfectly-plastic analysis has been performed in accordance with ASME VIII Division 2. Details of the assessment are provided in Section 3.2.1.

D.6 RESULTS

D.6.1 Internal Pressure

A contour plot of maximum principal stresses due to an internal pressure loading of 79.5 barg is presented in Figure D3. Away from concentrations, maximum principal stress in the adjoining pipe is in the range 200 to 230 MPa. Classical theory predicts a hoop stress of 228.6 MPa in the outside wall for a wall thickness of 15.9 mm. This provides some confidence in the model.

D.6.2 Sustained

D.6.2.6 Limit Load Analysis

Table D11 summarises the results of the assessment, limiting loading factors of 1.57 and 1.46 were found for the abnormal and normal sustained loadcases, and therefore the sweepolet is fit for purpose for the anticipated sustained loadings.

D.6.3 Shakedown

Only the most highly stressed region, located at the sweepolet crotch, has been considered for assessment. From Figure D5, it is shown that for an assumed minimum material grade of X60, shakedown is successfully achieved.

Figure D6 shows the maximum predicted displacement of the fitting for thirteen repeat load cycles. It is shown that the predicted displacement does not change significantly from the first to last load cycle. It can thus be inferred that the overall dimensions of the fitting have not changed and the tee satisfies the ASME VIII elastic-plastic ratcheting criteria.

D.6.4 Fatigue

Table D13 shows the results of the fatigue assessment, the maximum past + future cumulative usage was calculated to be 0.45 at the sweepolet crotch, and therefore the sweepolet is considered to be fit for purpose for the past and anticipated future fatigue duties.

D.7 CONCLUSIONS

- 1. A three-dimensional finite element model of the 900mmx200mm sweepolet has been created.
- 2. System forces and moments, giving rise to the sustained, shakedown and fatigue exceptions have been extracted from the relevant pipe stress model and applied on the FE model together with internal pressure.
- 3. Finite element analysis of the 900mmx200mm sweepolet has been undertaken using the ABAQUS software, with a subsequent limit load and fatigue assessment to the TD/12 DBA criterion for sustained and fatigue loadcases only.
- In lieu of a TD/12 elastic-plastic shakedown criterion, an incremental plastic collapse assessment has been undertaken to the requirements of ASME VIII Division 2.
- 5. Limiting loading factors of 1.57 and 1.46 were found for the normal and abnormal sustained loadcases, and therefore the sweepolet is fit for purpose for the anticipated sustained loadings.
- 6. The 900mmx200mm sweepolet has been shown to satisfy the DBA fatigue criterion of TD/12.
- 7. The 900mmx200mm sweepolet has been shown to satisfy the elastic-plastic incremental plastic collapse criterion of ASME VIII Div 2.

Figure D1 – 900mm x 200mm Sweepolet Details

Assessment	Reported Code Stress Ratio (%)	Usage	Model Name	Node Number
Abnormal Sustained	255.31	-	KL_CLAY_SETTLEMENT_FF_01	1310
Sustained	111.84	-	KL_FIRM_CLAY_FF_01_PITS_SOFT_FILL	15990
Shakedown	164.47	876	KL_CLAY_SETTLEMENT_RF_01	1 5990
Fatigue	-	14.18	1971_FIRM_CLAY 1998_RF_FIRM_CLAY 1998_FF_FIRM_CLAY 2003-2021_RF_FIRM_CLAY 2003-2021_FF_FIRM_CLAY 2021-2050_X10_RF_FIRM_CLAY_NO_PITS_SOFT_FILL 2021-2050_X10_FF_FIRM_CLAY_NO_PITS_SOFT_FILL	15990

Figure D2 – Loadcases Assessed

Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
1300	58706	87219	-15287	-217261	-56186	- <mark>8018</mark> 8
1310	-58706	-87219	15287	217355	63064	119797
1310	45920	175628	-12967	-283474	-64215	-125143
1320	-45920	-175628	12967	284042	105708	689156
1310	1457	-47865	-1571	66119	1150	5346
1570	-1457	47865	1571	-40606	-374	-5346
able D2	Abreau	mal Cuat		tracted Le	rees and	Mananto

<u>Table D3 – Abnormal Sustained Extracted Forces and Moments,</u> <u>900mmx200mm Sweepolet, Node 1310</u>

Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
15981	598736	14	1645	-208	138970	-1154
15990	-598736	-14	-1645	208	-144217	1197
15990	672524	-135	899	-218	129886	-1281
16000	-672524	135	- <mark>8</mark> 99	218	-131698	1008
15990	-12229	69	-2598	10	14330	83
16650	12229	-69	2598	27	-7812	-83

Table D4 – Sustained Extracted Forces and Moments, 900mmx200mm Sweepolet, Node 15990

Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
15980	531776	320	74174	1034	25081	319
15990	-531776	-320	-74174	-1034	-498389	1723
15990	826762	89	-17926	1214	406325	-1687
16000	-826762	-89	17926	-1214	-370204	1866
15990	-91795	77	32211	-180	92064	-37
16650	91795	-77	-32211	221	-43137	37

<u>Table D5 – Loadcase 9, Shakedown, Extracted Forces and Moments,</u> <u>900mmx200mm Sweepolet, Node 15990</u>

	1971 - 1998										
	Node	FX N.	FY N.	FZ N.	MX N.m.	MY N.m.	MZ N.m.				
	15980	1546224	785	67477	-206	44524	1145				
	15990	-1546224	-785	-67477	206	-475094	3862				
L8											
	15990	1974454	-327	26567	-360	315462	-3848				
	16000	-1974454	327	-26567	360	-368994	3188				

		Í Í		ĺ			
	15990	-176007	430	-823	154	159632	-14
	16650	176007	-430	823	75	-65820	14
	15980	1517156	767	65888	-198	44759	1114
	15990	-1517156	-767	-65888	198	-465192	3781
					2 2		
19	15990	1939532	-321	25967	-349	310028	-3767
	16000	-1939532	321	-25967	349	-362353	3121
2	707570		101210	12220	001200	1912 1212 1212	12.2
1	15990	-171245	421	-892	151	155164	-14
	16650	171245	-421	892	74	-63889	14
	45000	4262620	644	555.40	404	26767	0.20
8	15980	1262638	644	55549	-181	36/6/	929
	15990	-1262638	-644	-55549	181	-391228	31//
8	15000	1609157	260	21202	207	260282	2101
L10	15350	1608157	269	_21293	-307	-303188	2630
2	10000	-1000157	205	-21255	307	-303100	2035
1	15990	-141378	344	-146	126	130946	3
	16650	141378	-344	146	57	-55591	-3
2	10000	112010	0	1.0		00001	
S	15980	313195	171	15902	-95	4373	234
	15990	-313195	-171	-15902	95	-105846	859
111	15990	376129	-71	5771	-122	63964	-861
LII	16000	-376129	71	-5771	122	-75591	717
	15990	-45128	85	183	26	41883	2
	16650	45128	-85	-183	19	-17829	-2
		r 21					
	15980	307543	170	15619	-91	4223	238
2	15990	-307543	-170	-15619	91	-103890	846
2	2023212	0.000	2.030		10-2727	8989642070	10/201
L12	15990	368445	-70	5667	-119	62671	-848
	16000	-368445	70	-5667	119	-74090	706
	15000	44446	05	174	27	41240	2
	15990	-44416	85	1/4	27	41219	2
	16620	44416	-85	-1/4	18	-1/545	-Z
			1998 - 20	03 Reverse El	0₩		
	15981	1606953	-39	18841	-1076	423959	-3406
L8	15990	-1606953	39	-18841	1076	-484073	3781
	10000	1000333		10041	10/0	1010/5	5201

_	15990	1954578	-245	13938	-727	325401	-3245
	16000	-1954578	245	-13938	727	-353487	2751
-							
-	15990	-175784	-169	-3280	-349	158672	-36
	16650	175784	169	3280	258	-64978	36
	15981	1576919	-38	18270	-1046	415242	-3335
-	15990	-1576919	38	-18270	1046	-473533	3214
_							
	15990	1918333	-241	13575	-706	319520	-3178
19	16000	-1918333	241	-13575	706	-346873	2693
	15990	-170738	-164	-3276	-340	154013	-35
	16650	170738	164	3276	252	-63008	35
	15981	1287131	-40	14914	-895	344679	-2798
	15990	-1287131	40	-14914	895	-392262	2669
110	15990	1562029	-199	10478	-608	264174	-2656
LIU	16000	-1562029	199	-10478	608	-285288	2255
	15990	-138816	-152	-2078	-288	128088	-13
	16650	138816	152	2078	207	-54098	13
	15981	306827	-8	4625	-287	91813	-774
	15990	-306827	8	-4625	287	-106568	749
1 1 1	15990	364492	-54	2897	-204	64745	-747
	16000	-364492	54	-2897	204	-70583	637
	15990	-45232	-44	-359	-83	41823	-2
	16650	45232	44	359	59	-17714	2
	15981	300899	-8	4533	-281	89991	-756
	15990	-300899	8	-4533	281	-104454	731
112	15990	356760	-53	2839	-200	63357	-729
	16000	-356760	53	-2839	200	-69076	622
F							
	15990	-44446	-43	-356	-81	41097	-2
-							

	1998 - 2003 Forward Flow								
	15981	767185	-144	3855	-718	205809	-1682		
	15990	-767185	144	-3855	718	-218108	1222		
18	15990	918717	-59	2980	-415	158141	-1189		
LO	16000	-918717	59	-2980	415	-164146	1071		
	15990	-68837	-237	-2019	-304	59967	-33		
	16650	68837	237	2019	177	-23276	33		
			1949	1.5.965					
3	15981	734482	-141	3441	-696	198024	-1622		
8	15990	-734482	141	-3441	696	-209003	1171		
1	45000	070100			101	151050			
L9	15990	8/9488	-56	2/41	-401	151659	-1136		
8	16000	-879488	56	-2/41	401	-15/182	1024		
Ĩ	15000	66200	220	2001	205	E724E	ЭГ		
8	15990	-00299	-229	-2091	-295	22007	-30		
	0000	00299	229	2091	1/5	-22007	30		
	15081	111721	-144	8/	-545	127/63	-1085		
8	15990	-11/721	1//	-8/	5/15	-127730	627		
3	13330	111/21	111	04	545	12//30	027		
3	15990	523215	-14	-356	-302	96319	-614		
L10	16000	-523215	14	356	302	-95602	585		
	15990	-34368	-217	-893	-243	31411	-13		
	16650	34368	217	893	127	-13093	13		
	15981	252287	-20	2359	-190	63172	-532		
	15990	-252287	20	-2359	190	-70697	467		
111	15990	304181	-30	1788	-118	50097	-462		
LII	16000	-304181	30	-1788	118	-53699	402		
8	15990	-22462	-48	-472	-72	20600	-4		
	16650	22462	48	472	46	- <mark>8628</mark>	4		
			(2) parama						
	15981	244973	-21	2278	-187	61387	-516		
1	15990	-244973	21	-2278	187	-68654	449		
L12									
8	15990	295327	-28	1727	-116	48664	-445		
5	16000	-295327	28	-1727	116	-52143	388		
	15990	-21793	-48	-462	-71	19990	-4		
-----------	-----------	-----------------------	-------------------	------------------------------	--------------	--	-----------------		
	16650	21793	48	462	45	-8374	4		
			2003 - 20	021 Reverse F	low				
	15981	1606805	-39	18910	-1078	424009	-3407		
	15990	-1606805	39	-18910	1078	-484343	3282		
		2		a	2				
18	15990	1954857	-246	14006	-727	325127	-3246		
LO	16000	-1954857	246	-14006	727	-353349	2751		
							2. .		
	15990	-176218	-168	-3270	-351	159216	-36		
	16650	176218	168	3270	261	-65290	36		
						···· · · · · · · · · · · · · · · · · ·	й. т.		
	15981	1576776	-38	18337	-1048	415291	-3336		
	15990	-1576776	38	-18337	1048	-473794	3215		
				-					
19	15990	1918603	-241	13640	-706	319254	-3180		
LJ	16000	-1918603	241	-13640	706	-346739	2693		
	15990	-171159	-163	-3267	-342	154540	-35		
	16650	171159	163	3267	255	-63311	35		
	15981	1287023	-40	14972	-897	344722	-2799		
2	15990	-1287023	40	-14972	897	-392489	2670		
5				and the second second second	******				
L10	15990	1562245	-199	10532	-608	263953	-2657		
55.00248a	16000	-1562245	199	-10532	608	-285175	2255		
		Sector Collegence and	211152.011110.000	an addated for the time of	60000 87% To	Kard David Standard Las	aperon *		
	15990	-139141	-151	-2065	-289	128536	-13		
	16650	139141	151	2065	209	-54373	13		
-				1	1	<u>г т</u>			
5	15981	306763	-8	4644	-288	91819	-774		
4	15990	-306763	8	-4644	288	-106636	749		
2	222327272		200	72/21212	2,210	2/212/272			
L11	15990	364551	-54	2916	-204	64669	-747		
	16000	-364551	54	-2916	204	-70545	637		
-					1000				
2	15990	-45338	-44	-356	-84	41966	-2		
2	16650	45338	44	356	60	-17801	2		
	45055								
	15981	300837	-8	4552	-282	89998	-757		
L12	15990	-300837	8	-4552	282	-104520	731		

	15990	356819	-53	2857	-200	63282	-728		
	16000	-356819	53	-2857	200	-69039	621		
	15990	-44549	-43	-354	-82	41238	-2		
	16650	44549	43	354	59	-17493	2		
8									
	2003 - 2021 Forward Flow								
	15981	767075	-145	3884	-722	205801	-1682		
	15990	-767075	145	-3884	722	-218194	1220		
2									
18	15990	918786	-58	3008	-416	158025	-1187		
20	16000	-918786	58	-3008	416	-164085	1069		
							×.		
	15990	-69025	-238	-2015	-306	60170	-33		
	16650	69025	238	2015	179	-23379	33		
				[<u>т</u> т			
4	15981	189917	-111	-2948	-334	66441	-595		
3	15990	-189917	111	2948	334	-57034	242		
			5 <u>2</u> 3		10 12 12				
L9	15990	217605	3	-2286	-177	46021	-227		
	16000	-217605	-3	2286	177	-41415	233		
1	15000	14550	147	1070	457	11012	45		
	15990	-14550	-14/	-1070	-157	11013	-15		
	16650	14550	147	1070	/8	-3258	15		
	15091	226012	120	1565	422	102226	071		
4	15981	226012	-129	-1505	-432	103230	-6/1		
1	13990	-550012	129	1303	452	-90245	401		
	15990	398632	-8	-660	-227	73725	-132		
L10	16000	-398632	8	660	227	-72395	416		
1	10000	330032	0	000	227	12355	410		
	15990	-32471	-179	-2192	-206	24518	-29		
1	16650	32471	179	2192	111	-7211	29		
		and a second	77 88.000M	i contractivente.		1	C77744587. 10		
	15981	209640	-11	1459	-144	54862	-463		
1	15990	-209640	11	-1459	144	-59516	428		
10				Well, 21 (20 Perform	(1	1000000		
144	15990	258248	-31	1908	- <mark>8</mark> 8	40722	-410		
L11	16000	-258248	31	-1908	88	-44566	348		
					5				
	15990	-25198	-25	-1659	-55	18795	-18		
	16650	25198	25	1659	42	-5364	18		
					-				

Report Number: -R0724-21 Revision: 01

I	15981	209638	-12	1459	-146	54859	-464
	15990	-209638	12	-1459	146	- <mark>59515</mark>	424
112	15990	258240	-30	1908	-89	40722	-406
	16000	-258240	30	-1908	89	-44566	345
	15990	-25190	-26	-1658	-57	18793	-18
	16650	25190	26	1658	43	-5366	18
					121		
	Transformer and	г	2021 - 2	050 Reverse F	low	T	1001-04.000
-	15981	1656998	63	2924	-678	414404	-3577
-	15990	-1656998	-63	-2924	678	-423733	3779
	15000	1026770	150	4075	000	274452	1400
L8	15990	1836/78	-452	16/5	-822	3/4150	-4106
i.	16000	-1836//8	452	-16/5	822	-37/525	3196
	15000	12206	267	10071	144	10501	207
5	15990	-42290	207	-10071	144	27040	327
	10050	42290	-207	10071	-1	-27040	-527
	15981	1624826	61	2846	-659	405886	-3499
5	15990	-1624826	-61	-2846	659	-414965	3693
1	10000	1021020				12.000	0000
	15990	1803207	-441	1697	-799	366849	-4012
L9	16000	-1803207	441	-1697	799	-370269	3124
Ī							
	15990	-41044	258	-10628	140	48116	319
	16650	41044	-258	10628	-2	-26240	-319
	15981	1324816	46	1794	-561	337049	-2946
	15990	-1324816	-46	-1794	561	-342773	3094
3-					2		
L10	15990	1466116	-373	1246	-695	301668	-3378
-	16000	-1466116	373	-1246	695	-304179	2626
2	15000	25050	247	0.000	424	44405	201
-	15990	-35059	21/	-9640	134	41105	284
	16650	35059	-217	9640	-18	-22418	-284
1	15091	326510	25	196	177	00720	920
	15900	-326510	_25	_186	-1/7	_91330	-030
į.	13330	-520515	- ∠ J	-100	1//	-51550	515
L11	15990	339581	-115	-294	-728	77567	-1009
1	16000	-339581	115	294	228	-76974	778
2	10000	555501		~ ~ .	220		
					1		

Report Number: -R0724-21 Revision: 01

15990

16650

-11734

11734

81

-81

		20			20	50 - MA	
	15981	320191	24	174	-174	88935	-821
	15990	-320191	-24	-174	174	-89489	898
112	15990	333032	-112	-289	-224	75959	-986
	16000	-333032	112	289	224	-75376	760
	15990	-11536	79	-2864	50	13530	89
	16650	11536	-79	2864	-8	-7381	-89
						2.3 WY	
			2021 - 20)50 Forward F	low		
	15981	791938	-58	-2093	-459	203730	-1759
	15990	-791938	58	2093	459	-197053	1575
					5 5		
18	15990	880472	-184	-2392	-414	179454	-1687
	16000	-880472	184	2392	414	-174634	1316
	15990	-14948	38	-3499	-45	17599	112
	16650	14948	-38	3499	65	-9631	-112
	15981	196840	-65	-4079	-209	67268	-623
	15990	-196840	65	4079	209	-54253	417
	alacit. Davis Schwart		BALLY'S	1 12 12 12 12 12 12	8.00/2000	s and the second second	statistica a
19	15990	211235	-52	-3600	-159	51033	-445
	16000	-211235	52	3600	159	-43779	340
			an (2007)			A112 (0.100)	
	15990	-2671	-26	-893	-49	3220	28
	16650	2671	26	893	35	-1796	-28
1					1		
	15981	348710	-72	-3889	-245	103284	-948
	15990	-348710	72	3889	245	-90875	717
	22222	0.0.00000	12:20	02-03		1000000	
L10	15990	381/03	-91	-3382	-220	83913	-/40
	16000	-381/03	91	3382	220	-//098	556
	15000	5000	1.4	1051			
	15990	-5880	1	-1851	-25	6962	23
	16650	5880	-1	1851	26	-3828	-23
	45001			0.01			
	15981	218041	-2	-201	-82	539//	-496
L11 -	15990	-218041	2	201	82	-53335	491

-2904

2904

51

-8

13762

-7508

90

-90

Table D6 – Fatigue Extracted Forces and Moments, 900mmx200mm Swepolet

va	lue
Node 25004	Node 25002
-58706	45920
-15287	12967
87219	-175628
2.17E+08	-2.8E+08
-1.2E+08	1.25E+08
-6.3E+07	64215000
	Node 25004 -58706 -15287 87219 2.17E+08 -1.2E+08 -6.3E+07

Value				
Node 25004	Node 25002			
-672524	598736			
899	-1645			
135	14			
218000	-208000			
-1281000	1197000			
-1.3E+08	1.44E+08			
	Node 25004 -672524 899 135 218000 -1281000 -1.3E+08			

Table D8 – ABAQUS Input, Sustained

Lord Trues	Va	lue					
соад туре	Node 25004	Node 25002					
FX (N)	-826762	531776					
FY (N)	-17926	-74174					
FZ (N)	-89	320					
MX (N.mm)	-1214000	1034000					
MY (N.mm)	-1687000	1723000					
MZ (N.mm)	-4.1E+08	4.98E+08					
Table D9 – ABAQUS Input, L9, Shakedown							

	1971 - 1998									
		L8	L9		L1	LO	L	11	L12	
Load Type	Node 25004	Node 25002	Node 25004	Node 25002	Node 25004	Node 25002	Node 25004	Node 25002	Node 25004	Node 25002
FX (N)	-1974454	1546224	-1939532	1517156	-1608157	1262638	-376129	313195	-368445	307543
FY (N)	26567	67477	25967	-65888	21293	-55549	5771	-15902	5667	-15619
FZ (N)	327	785	321	767	269	644	71	171	70	170
MX (N.mm)	360000	-206000	349000	-198000	307000	-181000	122000	-95000	119000	-91000
MY (N.mm)	-3848000	3862000	-3767000	3781000	-3181000	3177000	-861000	859000	-848000	846000
MZ (N.mm)	-3.2E+08	4.75E+08	-3.1E+08	4.65E+08	-2.6E+08	3.91E+08	-6.4E+07	1.06E+08	-6.3E+07	1.04E+08
1998 - 2003 Reverse Flow										
E.		L8	L	9	L1	LO	Li	11	L1	.2
FX (N)	-1954578	1606953	-1918333	1576919	-1562029	1287131	-364492	306827	-356760	300899
FY (N)	13938	-18841	13575	-18270	10478	-14914	2897	-4625	2839	-4533
FZ (N)	245	-39	241	-38	199	-40	54	-8	53	-8
MX (N.mm)	727000	-1076000	706000	-1046000	608000	-895000	204000	-287000	200000	-281000
MY (N.mm)	-3245000	3281000	-3178000	3214000	-2656000	2669000	-747000	749000	-729000	731000
MZ (N.mm)	-3.3E+08	4.84E+08	-3.2E+08	4.74E+08	-2.6E+08	3.92E+08	-6.5E+07	1.07E+08	-6.3E+07	1.04E+08
	97		28	1998	8 - 2003 Forwa	rd Flow				
		L8	L	9	L1	LO	L	11	L1	.2
FX (N)	-918717	767185	-879488	734482	-523215	444721	-304181	252287	-295327	244973
FY (N)	2980	-3855	2741	-3441	-356	-84	1788	-2359	1727	-2278
FZ (N)	59	-144	56	-141	14	-144	30	-20	28	-21
MX (N.mm)	415000	-718000	401000	-696000	302000	-545000	118000	-190000	116000	-187000
MY (N.mm)	-1189000	1222000	-1136000	1171000	-614000	627000	-462000	467000	-445000	449000
MZ (N.mm)	-1.6E+08	2.18E+08	-1.5E+08	2.09E+08	-9.6E+07	1.28E+08	-5E+07	70697000	-4.9E+07	68654000
	2003 - 2021 Reverse Flow									

6		L8	L	9	L1	10	L1	11	L1	.2
FX (N)	-1954857	1606805	-1918603	1576776	-1562245	1287023	-364551	306763	-356819	300837
FY (N)	14006	-18910	13640	-18337	10532	-14972	2916	-4644	2857	-4552
FZ (N)	246	-39	241	-38	199	-40	54	-8	53	-8
MX (N.mm)	727000	-1078000	706000	-1048000	608000	-897000	204000	-288000	200000	-282000
MY (N.mm)	-3246000	3282000	-3180000	3215000	-2657000	2670000	-747000	749000	-728000	731000
MZ (N.mm)	-3.3E+08	4.84E+08	-3.2E+08	4.74E+08	-2.6E+08	3.92E+08	-6.5E+07	1.07E+08	-6.3E+07	1.05E+08
		na sub						2		
				2003	3 - 2021 Forwa	rd Flow				
5		L8	Ľ	9	L1	10	L1	1	L1	.2
FX (N)	-918786	767075	-217605	189917	-398632	336012	-258248	209640	-258240	209638
FY (N)	3008	-3884	-2286	2948	-660	1565	1908	-1459	1908	-1459
FZ (N)	58	-145	-3	-111	8	-129	31	-11	30	-12
MX (N.mm)	416000	-722000	177000	-334000	227000	-432000	88000	-144000	89000	-146000
MY (N.mm)	-1187000	1220000	-227000	242000	-432000	461000	-410000	428000	-406000	424000
MZ (N.mm)	-1.6E+08	2.18E+08	-4.6E+07	57034000	-7.4E+07	98243000	-4.1E+07	59516000	-4.1E+07	59515000
		26 <u>2</u> 64	29. 29	· (2)			1 D	· 10		
* *				202	1 - 2050 Rever	se Flow				
		L8	L	9	L1	10	L1	1	L1	.2
FX (N)	-1836778	1656998	-1803207	1624826	-1466116	1324816	-339581	326519	-333032	320191
FY (N)	1675	-2924	1697	-2846	1246	-1794	-294	-186	-289	-174
FZ (N)	452	63	441	61	373	46	115	25	112	24
MX (N.mm)	822000	-678000	799000	-659000	695000	-561000	228000	-177000	224000	-174000
MY (N.mm)	-4106000	3779000	-4012000	3693000	-3378000	3094000	-1009000	919000	-986000	898000
MZ (N.mm)	-3.7E+08	4.24E+08	-3.7E+08	4.15E+08	-3E+08	3.43E+08	-7.8E+07	91330000	-7.6E+07	89489000
				2021	L - 2050 Forwa	rd Flow				
		L8	Ľ	9	L1	LO	L1	1	L1	.2
FX (N)	-880472	791938	-211235	196840	-381703	348710	-243692	218041	-243698	218047

FY (N)	-2392	2093	-3600	4079	-3382	3889	-105	201	-105	202
FZ (N)	184	-58	52	- <mark>6</mark> 5	91	-72	58	-2	57	-2
MX (N.mm)	414000	-459000	159000	-209000	220000	-245000	89000	-82000	91000	-86000
MY (N.mm)	-1687000	1575000	-445000	417000	-740000	717000	-508000	491000	-507000	489000
MZ (N.mm)	-1.8E+08	1.97E+08	-5.1E+07	54253000	-8.4E+07	90875000	-4.8E+07	53335000	-4.8E+07	53337000

Table D10 – ABAQUS Input, Fatigue

	Normal Sustained Loadcase	Abnormal Sustained Loadcase
Loading Factor at Instability	1.82	1.74
TD/12 Factor	0.8	0.9
Limiting Loading Factor	1.46	1.57

Table D11 – Limit Load Assessment

Region	Primary + Secondary Membrane + Bending (MPa)	Allowable Stress (MPa) (3f)	Margin on Incremental Plastic Collapse
Shakedown - Branch Pipe	482.1	660.0	1.37
Shakedown - Header Pipe	598.4	660.0	1.10
Shakedown - Crotch	660.8	660.0	1.00

Table D12 – Shakedown Results

Caesar Model	Loadcase		Branch		Header Weld				Crotch				
		Peak Stress	Allowable Cycles	Cycles	Usage	Peak Stress	Allowable Cycles	Cycles	Usage	Peak Stress	Allowable Cycles	Cycles	Usage
71-98	L8	599.9	2.93E+03	4	1.36E-03	436.1	7.63E+03	4	5.24E-04	709.2	2.65E+03	4	1.51E-03
	L9	592.5	3.04E+03	27	8.87E-03	421.8	8.43E+03	27	3.20E-03	673	3.10E+03	27	8.72E-03

Report Number: -R0724-21 Revision: 00

	L10	320.2	1.93E+04	675	3.50E-02	107.2	5.14E+05	675	1.31E-03	176.7	1.71E+05	675	3.94E-03
	L11	65.11	2.29E+06	5400	2.35E-03	91.95	8.14E+05	5400	6.63E-03	54.24	5.92E+06	5400	9.12E-04
	L12	64.64	2.34E+06	4050	1.73E-03	90.24	8.61E+05	4050	4.70E-03	46.62	9.32E+06	4050	4.35E-04
	L8	379.1	1.16E+04	0	0.00E+00	427.1	8.12E+03	0	0.00E+00	680.6	3.00E+03	0	0.00E+00
	L9	371.9	1.23E+04	2	1.63E-04	398.9	9.97E+03	2	2.01E-04	643.8	3.54E+03	2	5.65E-04
98-03R	L10	137.5	2.43E+05	53	2.18E-04	113.5	4.33E+05	53	1.22E-04	145.1	3.09E+05	53	1.71E-04
	L11	78.37	1.32E+06	81	6.16E-05	112	4.51E+05	81	1.80E-04	55.24	5.60E+06	81	1.45E-05
	L12	77.23	1.37E+06	265	1.93E-04	109.2	4.86E+05	265	5.45E-04	51.52	6.91E+06	265	3.84E-05
	L8	351.4	1.46E+04	0	0.00E+00	429.3	8.00E+03	0	0.00E+00	668.4	3.16E+03	0	0.00E+00
	L9	333.1	1.71E+04	1	5.84E-05	405.6	9.49E+03	1	1.05E-04	630.8	3.76E+03	1	2.66E-04
98-03F	L10	98.7	6.58E+05	5	7.59E-06	86.95	9.63E+05	5	5.19E-06	131.6	4.14E+05	5	1.21E-05
	L11	53.77	4.07E+06	31	7.61E-06	36.8	1.27E+07	31	2.44E-06	54.73	5.76E+06	31	5.38E-06
	L12	49.6	5.19E+06	139	2.68E-05	31.52	2.02E+07	139	6.88E-06	46.44	9.43E+06	139	1.47E-05
	L8	377.5	1.18E+04	4	3.40E-04	428.2	8.06E+03	4	4.96E-04	680.4	3.00E+03	4	1.33E-03
	L9	370.4	1.25E+04	22	1.77E-03	399.8	9.91E+03	22	2.22E-03	643.7	3.54E+03	22	6.21E-03
03-21R	L10	136.1	2.51E+05	502	2.00E-03	115	4.16E+05	502	1.21E-03	144.9	3.10E+05	502	1.62E-03
	L11	78.8	1.29E+06	765	5.91E-04	112.5	4.45E+05	765	1.72E-03	55.29	5.59E+06	765	1.37E-04
	L12	77.66	1.35E+06	2495	1.85E-03	109.7	4.79E+05	2495	5.20E-03	51.78	6.80E+06	2495	3.67E-04
	L8	350.9	1.47E+04	4	2.73E-04	429.1	8.01E+03	4	4.99E-04	668.4	3.16E+03	4	1.26E-03
	L9	267.1	3.32E+04	12	3.61E-04	393	1.04E+04	12	1.15E-03	619.3	3.98E+03	12	3.02E-03
03-21F	L10	90.71	8.48E+05	46	5.42E-05	88.25	9.21E+05	46	4.99E-05	130	4.30E+05	46	1.07E-04
	L11	53.86	4.05E+06	294	7.26E-05	39.18	1.05E+07	294	2.79E-05	54.4	5.87E+06	294	5.01E-05
	L12	50.73	4.85E+06	1310	2.70E-04	34.09	1.60E+07	1310	8.20E-05	46.29	9.52E+06	1310	1.38E-04
	L8	479.8	5.73E+03	20	3.49E-03	493.7	5.26E+03	20	3.80E-03	682.4	2.97E+03	20	6.73E-03
21-50P	L9	469.4	6.12E+03	1320	2.16E-01	474.7	5.92E+03	1320	2.23E-01	645.7	3.51E+03	1320	3.76E-01
21-20N	L10	218.2	6.09E+04	3100	5.09E-02	154.2	1.73E+05	3100	1.80E-02	150.1	2.79E+05	3100	1.11E-02
	L11	53.63	4.10E+06	4720	1.15E-03	63.93	2.42E+06	4720	1.95E-03	53.6	6.13E+06	4720	7.70E-04

Report Number:	-R0724
Revision: 00	

L12

L8 L9

L10

L11

L12

Cumulative Usage

21-50F

-R0724-	21										
49.92	5.09E+06	15390	3.02E-03	59.35	3.03E+06	15390	5.08E-03	45.39	1.01E+07	15390	1.52E-03
396.6	1.01E+04	20	1.97E-03	469.9	6.10E+03	20	3.28E-03	670	3.14E+03	20	6.37E-03
267.2	3.32E+04	70	2.11E-03	396.8	1.01E+04	70	6.91E-03	619.2	3.98E+03	70	1.76E-02
100.2	6.29E+05	290	4.61E-04	101.6	6.04E+05	290	4.80E-04	129.9	4.31E+05	290	6.73E-04
60.95	2.80E+06	1810	6.47E-04	52.88	4.28E+06	1810	4.23E-04	54.54	5.82E+06	1810	3.11E-04
57.84	3.27E+06	8090	2.47E-03	48.52	5.54E+06	8090	1.46E-03	46.58	9.34E+06	8090	8.66E-04

0.29

Table D13 – Fatigue Results

<u>0.34</u>

0.45

Α	В	с	D	Е	G	н	1	к
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(crotch radius)	(flank radius)	(mm)
76.2	381	15.9	202.7	219.1	357	27.4	70	441.3

Figure D1 – Sweepolet Geometry Dimensions

Figure D5 – Max. Displacement - Loadcase 9 – X60 Material Grade - ASME VIII Incremental Plastic Collapse

APPENDIX E 900MM X 50MM WELDOLET ASSESSMENT

E.1 GEOMETRY

In the absence of specific geometrical data the geometry of the weldolet is assumed to satisfy the requirements of the 1971 edition of F1. The properties used are shown in Table E1.

E.2 FINITE ELEMENT MODEL

The three dimensional finite element (FE) model of the weldolet was constructed using MSC Patran and analysed using the general purpose FE code ABAQUS. Twentynoded, three degree of freedom reduced integration brick (hexahedral) elements, C3D20R, were used for the analysis.

Beam elements representing the pipe stress model are tied to the open ends of the 3D solid model using rigid multi-point constraints (MPCs), as shown schematically in Figure E1. The three nodes J(1), J(2) and J(3) are coincident at the intersection but are not connected. The branch node, J(3), is fixed by a translational and rotational boundary condition, whilst forces and moments are applied at the header nodes J(1) and J(2).

The beams allow the application of forces and moments from the pipe stress model onto the solid model of the fitting. Adequate lengths of header and branch pipe are modelled such that the local effects of the MPCs are removed from the area of interest at the fitting.

The FE mesh created for the 900mmx50mm weldolet is shown in Figure E2.

E.3 MATERIAL PROPERTIES

Young's modulus and Poisson's ratio equal to 210000 N/mm² and 0.3, respectively, were used in all analyses. The actual material grade of the weldolet is unknown and has therefore been modelled assuming minimum required mechanical properties as per F1 1972. A material grade of X60 has been assumed which has a SMYS of 413MPa and SMUTS of 517MPa.

Material property details for the sweepolet and matching header and branch are provided in Table E1.

E.4 LOADS

E.4.1 Internal Pressure

Distributed pressure loads were applied to all internal surfaces.

In order to represent the branch and one of the header sections being 'capped off' downstream of the fitting, pressure end loads were applied to the header pipe

elements via the MPCs. The branch pressure end load was taken into consideration by the reaction at the branch boundary condition.

E.4.2 System Forces and Moments

For the assessment criteria considered, forces and moments were extracted for the most highly stressed fitting only, details of the IGE/TD/12 assessments considered and associated loadcase from the pipe stress analysis are provided in Table E2.

Before application to the FE model, the extracted forces and moments were converted to the axis convention of the FE model.

The extracted forces and moments are given in Table E3 and the forces and moments applied to the FE model are given in Table E4.

E.5 ANALYSIS

The assessment of the 900mmx900mm tee, of Appendix A, indicated very high stresses in the fitting which exceeded the linear elastic assessment criteria of IGE/TD/12, for both plastic collapse and shakedown. For this reason, and in order to obtain a more accurate solution, non-linear analyses have been undertaken to determine the acceptability of the 900mmx50mm weldolet.

E.5.1 Plastic Collapse (Limit Load Analysis)

Protection against plastic collapse is demonstrated by undertaking an elasticperfectly-plastic (limit load) analysis to determine the load which causes overall structural instability.

E.6 RESULTS

E.6.1 Internal Pressure

A contour plot of maximum principal stresses due to an internal pressure loading of 79.5 barg is presented in Figure E3. Away from concentrations, maximum principal stress in the adjoining pipe is in the range 200 to 230 MPa. Classical theory predicts a hoop stress of 228.6 MPa in the outside wall for a wall thickness of 15.9 mm. This provides some confidence in the model.

E.6.2 Sustained

E.6.2.7 Limit Load Analysis

Table E5 summarises the results of the assessment, a limiting loading factor of 1.58 was found for the abnormal sustained loadcase, and therefore the weldolet is fit for purpose for the anticipated abnormal sustained loadings.

E.7 CONCLUSIONS

- 1. A three-dimensional finite element model of the 900mmx50mm weldolet has been created.
- 2. System forces and moments, giving rise to the sustained and shakedown exceptions have been extracted from the relevant pipe stress model and applied on the FE model together with internal pressure.
- 3. Finite element analysis of the 900mmx50mm weldolet has been undertaken using the ABAQUS software, with a subsequent limit load assessment to the TD/12 DBA criterion for sustained loading.
- 4. A limiting loading factor of 1.58 was found for the abnormal sustained loadcase, and therefore the weldolet is fit for purpose for the anticipated abnormal sustained loadings.

	Header Pipe		E	Branch Pipe	Weldolet	Material		
Diamotor	Wall	Material	Diamotor	Wall	Material	Material	Grade	
Diameter	Thickness	Grade	Diameter	Thickness	Grade	Grade	X6	0
							SMYS	UTS
914.4	15.9	X60	60.3	5.5	В	X60	413	517

Table E1 – 900mm x 50mm Weldolet Details

Assessment	Reported Code Stress Ratio (%)	Usage	Model Name	Node Number
Abnormal Sustained	105.97	-	KL_CLAY_SETTLEMENT_FF_01	6160

Table E2 – Loadcases Assessed

Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
6116	-503	-369630	-251042	1920059	31692	-95346
6160	503	369630	251042	-1920421	-31692	95346
6160	-2004	-369145	-254890	1917504	31716	-94329
6165	2004	369145	254890	-1917866	-31714	94329
6160	1355	-362	3534	1300	-24	-398
8690	-1355	362	-3534	-1166	24	346

Table E3 – Abnormal Sustained Extracted Forces and Moments, 900mmx50mm weldolet, Node 6160

Local Toma	Value							
гоад туре	Node 100004	Node 100002						
FX (N)	-254890	251042						
FY (N)	369145	-369630						
FZ (N)	2004	-503						
MX (N.mm)	-94329000	95346000						
MY (N.mm)	-31716000	31692000						
MZ (N.mm)	-1.92E+09	1.92E+09						
Table E4 – ABAQUS Input, Abnormal Sustained								

	Abnormal Sustained Loadcase
Loading Factor at Instability	1.76
TD/12 Factor	0.9
Limiting Loading Factor	1.58

Table E5 – Limit Load Assessment – Abnormal Sustained

Figure E1 - Beam Schematic

Figure E2 – 900mm x 50mm Weldolet Mesh

ODB: 900x500_Weldblet_Abnormal_Sustained.odb Abaqus/Standard 6.9-3 Mon Dec 06 11:59:07 GMT Standard Time 2021

ž____x

Step: Pressure_end_load Increment 1: Step Time = 1.000 Primary Var: S, Max. Principal Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure E3 – Max. Principal Stress Due to 79.5 barg

APPENDIX F 50MM X 50MM TEE ASSESSMENT

F.1 GEOMETRY

In the absence of specific geometrical data the geometry of the tee is assumed to meet the requirements of the 1993 edition of T2. The properties used are shown in Table F1.

F.2 FINITE ELEMENT MODEL

The three-dimensional finite element (FE) model of the tee was constructed using MSC Patran and analysed using the general purpose FE code ABAQUS. Twentynoded, three degree of freedom reduced integration brick (hexahedral) elements, C3D20R, were used for the analysis.

Beam elements representing the pipe stress model are tied to the open ends of the 3D solid model using rigid multi-point constraints (MPCs), as shown schematically in Figure F1. The three nodes J(1), J(2) and J(3) are coincident at the intersection but are not connected. The branch node, J(3), is fixed by a translational and rotational boundary condition, whilst forces and moments are applied at the header nodes J(1) and J(2).

The beams allow the application of forces and moments from the pipe stress model onto the solid model of the fitting. Adequate lengths of header and branch pipe are modelled such that the local effects of the MPCs are removed from the area of interest at the fitting.

The FE mesh created for the 50mmx50mm tee is shown in Figure F2.

F.3 MATERIAL PROPERTIES

Young's modulus and Poisson's ratio equal to 210000 N/mm² and 0.3, respectively, were used in all analyses. The actual material grade of the tee is unknown and has therefore been modelled assuming minimum required mechanical properties as per T2 1993. Grade B material grade has been assumed which has a SMYS of 241MPa and SMUTS of 413MPa.

Material property details for the tee and matching header and branch are provided in Table F1.

F.4 LOADS

F.4.1 Internal Pressure

Distributed pressure loads were applied to all internal surfaces.

In order to represent the branch and one of the header sections being 'capped off' downstream of the fitting, pressure end loads were applied to the header pipe

elements via the MPCs. The branch pressure end load was taken into consideration by the reaction at the branch boundary condition.

F.4.2 System Forces and Moments

For the assessment criteria considered, forces and moments were extracted for the most highly stressed fitting only, details of the IGE/TD/12 assessments considered and associated loadcase from the pipe stress analysis are provided in Table F2.

Before application to the FE model, the extracted forces and moments were converted to the axis convention of the FE model.

The extracted forces and moments are given in Table F3 and the forces and moments applied to the FE model are given in Table F4.

F.5 ANALYSIS

The assessment of the 900mmx900mm tee, of Appendix A, indicated very high stresses in the fitting which exceeded the linear elastic assessment criteria of IGE/TD/12, for both plastic collapse and shakedown. For this reason, and in order to obtain a more accurate solution, non-linear analyses have been undertaken to determine the acceptability of the 50mmx50mm tee.

F.5.1 Plastic Collapse (Limit Load Analysis)

Protection against plastic collapse is demonstrated by undertaking an elasticperfectly-plastic (limit load) analysis to determine the load which causes overall structural instability.

F.6 RESULTS

F.6.1 Internal Pressure

A contour plot of maximum principal stresses due to an internal pressure loading of 79.5 barg is presented in Figure F3. Away from concentrations, maximum principal stress in the adjoining pipe is in the range 30 to 40 MPa. Classical theory predicts a hoop stress of 43.3 MPa in the outside wall for a wall thickness of 5.54mm. This provides some confidence in the model.

F.6.2 Sustained

F.6.2.8 Limit Load Analysis

Owing to the complex geometry of the tee, and to eliminate the ambiguity of selecting suitable planes for linearsation across a section, a limit load analysis has been performed in accordance with Section A6.7 of TD/12.

Table F5 summarises the results of the assessment, a limiting loading factor of 3.21 was found for the abnormal sustained loadcase, and therefore the tee is fit for purpose for the anticipated abnormal sustained loadings.

F.7 CONCLUSIONS

- 1. A three-dimensional finite element model of the 50mmx50mm tee has been created.
- 2. System forces and moments, giving rise to the sustained and shakedown exceptions have been extracted from the relevant pipe stress model and applied on the FE model together with internal pressure.
- Finite element analysis of the 50mmx50mm tee has been undertaken using the ABAQUS software, with a subsequent limit load assessment to the TD/12 DBA criterion for sustained loading.
- In lieu of a TD/12 elastic-plastic shakedown criterion, an incremental plastic collapse assessment has been undertaken to the requirements of ASME VIII Division 2.
- 5. The stresses in the 50mmx50mm tee have been shown to be less than the TD/12 DBA criteria for plastic collapse.
- 6. The 50mmx50mm tee has been shown to satisfy the elastic-plastic incremental plastic collapse criterion of ASME VIII Div 2.

	Header Pipe		E	Material				
Diameter	Wall Material		Diameter	Wall	Material Grade	Grade Grade B		
						SMYS	UTS	
60.3	5.54	В	60.3	5.54	В	241	413	

Table F1 –50mm x 50mm Tee Details

Assessment	Reported Code Stress Ratio (%)	Usage	Model Name	Node Number
Abnormal Sustained	141.84	-	KL_CLAY_SETTLEMENT_FF_01	16980

Table F2 – Loadcases Assessed

Node	fx(N)	fy (N)	fz (N)	mx (N.m)	my (N.m)	mz (N.m)
16970	1639	14315	-60	45	35	1207
16980	-1639	-14310	60	-45	-39	-2116
18370	-1639	-14301	60	-41	-39	-2012
16980	1639	14306	-60	45	39	2116
					- 80 	
16980	0	5	0	0	0	0
18380	0	0	0	0	0	0

Table F3 – Abnormal Sustained Extracted Forces and Moments, 900mmx50mm weldolet, Node 6160

Load Tumo	Value				
гоад туре	Node 126002	Node 126001			
FX (N)	14306	5			
FY (N)	-1639	0			
FZ (N)	60	0			
MX (N.mm)	39000	0			
MY (N.mm)	-45000	0			
MZ (N.mm)	-2116000	0			
Table 54 ADAOUS Innut Abnormal Sustained					

Table F4 – ABAQUS Input, Abnormal Sustained

	Abnormal Sustained Loadcase
Loading Factor at Instability	3.57
TD/12 Factor	0.9
Limiting Loading Factor	3.21

Table F5 – Limit Load Assessment – Abnormal Sustained

Figure F1 - Beam Schematic

Figure F2 – 50mm x 50mm Tee Mesh

Figure F3 – Max. Principal Stress Due to 79.5 barg